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ABSTRACT

An analysis and physical interpretation of near-inertial waves (NIWs) propagating perpendicular to
a steady, two-dimensional, strongly baroclinic, geostrophic current are presented. The analysis is appropriate
for geostrophic currents with order-one Richardson numbers such as those associated with fronts experi-
encing strong, wintertime atmospheric forcing. This work highlights the underlying physics behind the
properties of the NIWs using parcel arguments and the principles of conservation of density and absolute
momentum. Baroclinicity introduces lateral gradients in density and vertical gradients in absolute momentum
that significantly modify the dispersion and polarization relations and propagation of NIWs relative to
classical internal wave theory. In particular, oscillations at the minimum frequency are not horizontal but,
instead, are slanted along isopycnals. Furthermore, the polarization of the horizontal velocity is not neces-
sarily circular at the minimum frequency and the spiraling of the wave’s velocity vector with time and depth
can be in the opposite direction from that predicted by classical theory. Ray tracing and numerical solutions
illustrate the trapping and amplification of NIWs in regions of strong baroclinicity where the wave frequency
is lower than the effective Coriolis frequency. The largest amplification is found at slantwise critical layers that
align with the tilted isopycnals of the current. Such slantwise critical layers are seen in wintertime observations
of the Gulf Stream and, consistent with the theory, coincide with regions of intensified ageostrophic shear
characterized by a banded structure that is spatially coherent along isopycnals.
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Oceanic KE frequency spectra peaked at
W = f ZQeaﬂh sm(latztude)
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» 5-10% of all KE
» Surface intensified, but present at all depths
» “Despite their ubiquity, energy, and many years of study, much about
the behavior of inertial waves remains obscure.” [Ferrari and Wunsch 2009]
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Surface currents resonate at
f=2Q _ sin(latitude)

35 days of observed surface wind stress
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Mixed layer near-inertial currents are amplified under
atmospheric storm tracks
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Figure 2. Seasonal variation of inertial mixed-layer energy computed from satellite-tracked drifter trajectories.
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Especially during winter

[Chaigneau et al. 2008]



Latitude
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KE flux from winds to mixed layer inertial currents
qualitatively consistent with drifter observations

[Alford 2003]
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Near-inertial motions coexist
with energetic lower-frequency geostrophic flows

Mean surface currents [cm/s] St. dev. surface currents [cm/s]
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~90% of KE in ocean: balanced low-frequency mesoscale eddies and mean flows

~10 % of KE: ageostrophic near-inertial motions

Big questions:
1) Kinetic Energy — do balanced flows provide a significant source of KE for NIW?
2) Upper-ocean mixing — do balanced flows modulate wind-generated NIW and

boundary-layer turbulence, ocean heat, nutrient, tracer budgets, atmosphere-ocean
exchange?



For Example: the Gulf Stream

Mean Dynamic Sea Surface Height anomaly h
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e Sharp drop in sea surface height (~ 1 m)
e Strong mean current (~ 1 m/s)

Approximate geostrophic force balance
just below the surface boundary layer

Mean Surface Current Speed |u| (drifters)

O,
60w as'w

http://oceancurrents.rsmas.miami.edu/atlantic/

Coriolis Pressure gradient
Force force

f =< <u> = —gV<h>

cmis



Annual average KE from winds to NIW in North Atlantic
(NCEP/NCAR reanalysis)

[e.g. Alford 2003]
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Gulf Stream lies underneath atmospheric storm tracks.



A strongly baroclinic geostrophic jet

Streamwise velocity [m/s]
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Density is written an anomaly from 1000 kg/m3

Buoyancy: b= _8P

* Surface pressure gradient compensated by baroclinic pressure gradient at depth.
* Velocity sheared, nearly in thermal wind balance.

| Thermal Wmd Balance
Geostrophic fu = P Hydrostatic 1 dp
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A strongly baroclinic geostrophic jet
Physics of Thermal Wind Balance

Streamwise velocity [m/s]
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Vertically sheared :
geostrophic flow tilts E> + Buoyancy: b= _8P

vertical spin into horizontal spin Po
balancing baroclinic torque

* Surface pressure gradient compensated by baroclinic pressure gradient at depth.
* Velocity sheared, nearly in thermal wind balance.
13 Thermal Wind Balance
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g fu=———p y O___&_p b |:> f—=——

balance: 0 dy Balance: 0 07 07 dy



A strongly baroclinic geostrophic jet

Geostrophic Richardson number Geostrophic Rossby number

Ri, = N*/|ou, /2] ~1-10 Ro =w~o,1_m
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Near-inertial motions in the Gulf Stream

Wind Stress Magnitude and Direction
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front
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Feb. 2007 section at 66° W
Cross-stream vertical shear [s!] (ADCP)

Observations of banded
ageostrophic shear
in the Gulf Stream
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Parallel to isopycnals,
strongest part of the front.
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Banded patterns of high Ri!

(A) Inverse Richardson number

Energetic turbulence

Qualitatively consistent with
simulations




Question for today

* Wind-forced near-inertial KE develops small horizontal scales

over a time scale ~ 1 day and propagates downward as internal
Inertia-gravity waves.

 How is the physics of near-inertial internal waves modified by
the presence of the strong front like the Gulf Stream?



Outline

Lagrangian interpretation of internal waves in rotating, stratified
fluids

— Buoyancy oscillations

— Inertial oscillations and absolute momentum

— Inertia-buoyancy oscillations

— Propagation of internal wave energy

Near-inertial waves propagating across a geostrophic flow in thermal
wind balance

— Absolute momentum and buoyancy conservation

— When are symmetric disturbances stable oscillations?

— Mean flow modification inertial-buoyancy oscillations

— Propagation of internal wave energy across a strongly baroclinic mean flow

Interpreting observations in the winter Gulf Stream



Buoyancy oscillations in a density-stratified fluid
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Buoyancy oscillations in a density-stratified fluid

Conservation Law: Dpp =0
Conservation of density Dt

Depth (z) Density (color) Restoring Force:

Buoyancy
101 Small adiabatic F =b=_g5_p=_gpp—<P>(Ze+C)
. displacement Y <P>(Ze)
Lighter
0, Dl o - o, ~ (p)(z, +0) e8P _
equilibrium depth P 0z
z,,6=0
Denser
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D¢ D
P Force balance § - N’
Dt Dt
< D
Pr <P, 3( 2+§2N2)=0
Initial Hydrostatic Balance g

Assuming the parcel adjusts instantantly to the

op
— = —gp(z) background pressure and that external frictional and
aZ diabatic effects are negligible



Buoyancy oscillations in a density-stratified fluid

DEPTH [M]

Typical oceanic vertical profile of
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Inertial oscillations in a fluid disk in solid body

Q=1 rotation
Side vi
CEVE z ; - <« Free surface height (h)
Initial Cyclostrophic balance
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Inertial oscillations in a fluid disk in
solid body rotation

Inertial Reference Frame Rotating Reference Frame




Inertial oscillations in a fluid disk

Conservation Law:
Conservation of absolute momentum

in solid body rotation

Definition

—ufy <M> A

4
Restoring Force: ' ——-fr=0< Tt =0
Coriolis force
Mp = up-f(ye_l_n) :'fye
Fo=-u, u(t)=fi(1) = OM = M,- (M )(y, +7)
Rotating Reference Frame
Force balance
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_ _ _ ' : adiabatic displacement
Assuming the parcel adjusts instantantly to the 0.2 0 0.2

background pressure and that external frictional and
diabatic effects are negligible
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Small inertial oscillations on a sphere

L(/llalr)/-

-

N. Pole

S. Pole

2Q), “Coriolis frequency” or
“Inertial” frequency

f =2Q sin(latitude)

12 hours (at the poles) approaching
infinity at the equator

Equator

Traditional local tangent plane approximation on a
sphere (constant f)

» lgnore Coriolis forces that compete with buoyancy force

f = (0,0,29,sin()) where Q, ~ 7.3 x 107° s~}
fxu= (—f’U,f’lL,O)



Inertia-buoyancy oscillations in a rotating
stratified fluid
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Inertia-buoyancy oscillations in a rotating
stratified fluid
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Inertia-gravity waves f<w<N

! 2 2 2 2 2
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» Parcel arguments cannot describe the wavelike properties

» Energy at a given frequency propagates at a fixed angle from horizontal in constant N, f

http://dennou.gaia.h.kyoto-u.ac.jp/library/gfd_exp/exp_e/exp/iw/1/res.htm



Inertia-gravity waves f<w<N

A Plane Wave Solution
k,=0,w=f

L, » L,

2 2 2 2 2
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d0t"|dz" dy 0z dy
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k| m .

— COS — — Sl

KO0 g e

w? = f*sin® ¢ + N?cos® ¢

» Pressure gradient force orthogonal to
parcel velocities in plane wave solutions

-> no energy propagation.
» Energy propagates in slowly-varying
plane waves,

¥ = Re(o(z, y, 2, ) (@@¥20)
c,=V,0
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When f <W< N, Wwave energy can propagate
w’ = f>cosO+ N’sin6

Lt orcing = 1 Sec T torcing = 0 sec T torcing = O sec
g

» Phase lines propagate perpendicular to energy propagation
» Energy propagates at the group velocity C, = Vl’ma)

> Shallower slope at lower frequencies. F =c (EN=pu
. 4. . . . a g p a
» Characteristics symmetric about horizontal axis

http://dennou.gaia.h.kyoto-u.ac.jp/library/gfd_exp/exp_e/exp/iw/1/res.htm



Small, unsteady, symmetric perturbations in a
steady and symmetric baroclinic geostrophic flow

u=ug+ua, v=v, W=w, b=bg+ba
0 0
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Modified wave eqgn Wy o _10pP,
ot a po 0y’
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F% = f(f — du,ldy), S* = fou,ldz = —db,ldy, ou b,
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[see also Mooers 1975, Kunze 1985, Young and Ben Jelloul 1997,Plougonven and Zeitlin 2005]



Small, unsteady, symmetric perturbations in a
steady and symmetric baroclinic geostrophic flow
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Small, unsteady, symmetric perturbations in a
steady and symmetric baroclinic geostrophic flow

Ri;'=|ou, /32 /N*>0
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o Force Diagram
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Forces on a parcel in the cross-front plane:
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Small, unsteady, symmetric perturbations in a
steady and symmetric baroclinic geostrophic flow

2 —du, /dy
Ri}'=|ou,/dz| /N*>0  Ro,=— 0(b,, M,
| | / 4 Ertel PV: g = ('g (ga )g)
—u .- ' Y,z
M, U, 1y
% _ Seoqrel 7 ) Inertia-gravity waves when b-surfaces are
- 4\s A shallower than M_-surfaces (>0 in NH),
?:;__ - Q - admits only real frequencies/complex growth
- 1" - Bg rates.
> L: 1" Symmetric Instabilities when b-surfaces are
d steeper than M -surfaces (q<0 in NH), admits
(@) complex frequencies/real growth rates

[Hoskins 1974].
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V F2 — 2520 + N262,
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Inertia-gravity waves when o’ > max( 0, fg/N?)

Wave equation is hyperbolic

(:)2 2 2
(F* - )—+2S +N?|y=0
0z 0ydz 8y

» Two characteristic slopes for a given w,
» Symmetric about isopycnals

S% +\[S* - N*(F* - ?)
: N?

- tan(9,) * \/ mm

/ 2 — — —
Wmin = \/};‘2 —_— S4/N2 —_ % F f(f aug/a)’), S2 faug/az abg/ay,
N? = 9b,laz

Minimum frequency inertial
oscillations parallel to isopycnals




Geostrophic flows modify the dispersion relation

w =~ F*-25%0+ N6

0 A - - N N S SR S
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0
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BAROTROPIC FLOW, Ro, =-0.7, 6, =0 F% = f(f — dugyldy), S* = fou,ldz = —ab,lay,

BAROCLINIC FLOW, Rog =0, 6, =0.03

wanin = VF? — SYN? = /24 — #1/1 + Ro, — Rij"

where Rog = —0uy/0y/ f and Rig = f2N?/8%

q is a potential vorticity
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Minimum frequency inertial oscillations
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Polarization of horizontal velocity

Uy = — (F2 — 5 0) Vg
fw
Velocity Hodographs [m/s]
2 : : :
F=.5f
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— 1/2
F=f(I+Ro,)
y 0
— 1/2
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- / Velocity
Vectors
| - att=0
-2 : : :
-2 -1 0 1 2

F% = f(f — 0ugyldy), S* = fou,ldz = —ab,ldy, [see Whitt and Thomas 2015 JPO]



Polarization of horizontal velocity

Uy = - (F o o 9) Va

fw
. lu /v | at W i,

Minimum frequency inertial oscillations parallel to

" |
/ -1 05 0 0.5 1
Wmin = VF2 — §4/N? = %=f\/1+Rog—Rig_1 Ro,

Hodographs at Wi,

have elliptical hodographs in a geostrophic flow:
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Linearized wave energy is conserved in the absence
of forcing, diabatic, and viscous effects

Integrate buoyancy and __ oM, oM, b o=— db, b,
) u,=-1 g =1 g
momentum conservation laws dy dz dy 0z
2
2 1
a(va / ) + fuava _ bawa - _ apava + apawa
ot Po\ 9y dz

2
Wal2) 4 (Fon -5, - (50~ N*Epw, = ‘L(al;ayva - )

o1 Po
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Form an “energy” equation
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Azp MHET : U

0A
E‘FV%Z'(pua):O

Equivalent to usual perturbation energy <A>T = <E>T: ]/2(u2+v2 + bZ/NZ)
when integrated over an integer number of wave periods T=2r/w in SHM




Cross-stream propagation of sub-inertial waves
in a spatially-variable geostrophic flow

An idealized domain
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Energy propagates along characteristics

w=w min W= F Ray Paths || Normalized Group Velocity (1) =, 9 5f

Characteristic slopes are OF 1
parallel to ray paths E
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Rays are parallel to characteristics

w=w min (,U:F Ray Paths || Normalized Group Velocity wz . 95f
Characteristic slopes are = N
parallel to ray paths 3 \ o, >
5 > £ -200f
W —w2. O SN~
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The same dispersion relation
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Sub-inertial waves trapped and amplified in a

spatially-variable geostrophic flow
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Sub-inertial waves trapped and amplified in a
spatially-variable geostrophic flow
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Modified Critical Layers
Ray Paths || Normalized Group Velocity () = 95f
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(Activity) x (group velocity) x (ray tube area) = constant [Lighthill 1978].
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Rays converge to the same line or point and ray tube
areas shrink to zero.



Baroclinicity ,,_./r?_>52%0. N26?
1. lowers the minimum frequency

2. extends the region where sub-inertial waves can exist

3. modifies the geometry of the critical layers
Ray paths assuming wave propagation is
only modified by variations in vertical
relative vorticity
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Ray tracing predicts trapped/amplified NIW
parallel to isopycnals in the Gulf Stream

Feb. 2007 observations 2 2 202
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Equilibrium numerical solution of linear equations
at constant frequency consistent with ray tracing
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Can be solved in
MATLAB (backslash) in a
couple seconds on my
laptop



Transient non-linear simulation forced by realistic
winds consistent with ray tracing
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0 i ' 1 i i i
56 58 60 62 64 66 68 70
Yearday 2012

Cross-Stream Velocity (v)

0 Ty~
— -200 \lﬁiﬁg—%s’/% Gl §

¥ caay o / q
N — ~
£ 400 2966 /// 0o ¢

@ / 6:3
Q -600 /’L AV
27

z -800
-80 -60 -40 -20 0 20 40
Cross-Stream [km] , , o
v Solved using non-linear primitive
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Conclusions

* Sub-inertial waves are trapped and amplified as they
approach their minimum frequency:

Wmin = V/F2 — §4/N? = ,/% = f\/l + Rog — Rig*

* Phase lines of minimum frequency oscillations are slanted
along isopycnals and the polarization of horizontal velocity
is not necessarily circular.

e Ray tracing and numerical solutions illustrate the trapping
and amplification of NIWs in regions of strong baroclinicity,
similar to observations of banded shear in the
observations.



