# On the role of the Gulf Stream in the changing Atlantic nutrient circulation during the 21<sup>st</sup> century Daniel B Whitt

Whitt (2018), in "Kuroshio Current: Physical, Biogeochemical and Ecosystem Dynamics," AGU-Wiley Geophysical Monograph Series. Edited by T. Nagai, H. Saito, K. Suzuki, and M. Takahashi. *In press.* 



### Outline

A large-scale observational description of the Gulf Stream nutrient stream

Projected decline of Gulf Stream nutrient flux in simulations with CESM, and implications

How small-scale processes modify AMOC and associated Gulf Stream nutrient transport

## What we usually talk about when we talk about the Gulf Stream

 Mean Surface Current Speed

 Image: speed spe

Streamwise velocity [m/s]



Depth [m]

Sea surface temperature



Crude schematic of upper-limb of North Atlantic circulation



Wikipedia

- Western boundary current of subtropical gyre
- Prominent surface front, steeply sloping isopycnals
- Key pathway of Atlantic meridional overturning circulation
- Large heat, salt and water transports

### Does Gulf Stream influence global biogeochemical cycles?



Nutrients depleted at surface, maximum in the main pycnocline

Isopleths of nutrient align with sloping isopycnals across the Gulf Stream

#### NO3 is elevated in the Gulf Stream on subsurface isopycnals



### Gulf Stream transports vast quantities of nutrients below the surface





Nutrient transport highly correlated with volume transport

#### Fate of Gulf Stream nutrients depends strongly on their depth/density class



Williams et al. (2006)

Deeper waters irrigate subpolar gyre, shallower waters irrigate gyre boundary Scaling key terms in the mean nitrate budget of the subpolar gyre above  $\sigma_{\theta} = 27.5 \text{ kg/m}^3$ 

- Gulf Stream NO3 flux 300-800 kmol/s
- AMOC NO3 flux
   350 kmol/s at 36 N
- Interior diapycnal nitrate flux < 10 kmol/s</li>
- Entrainment
   50-75 kmol/s

#### Hypotheses and motivating questions

Upper-ocean ( $\sigma_{\theta}$  < 27.5 kg/m<sup>3</sup>) NO3 sourced from south via AMOC (~80%) and entrainment via deep convection (~20%) in the subpolar N. Atl.

How much will 21<sup>st</sup> century declines in (1) AMOC and (2) deep convection drive declines in nutrient supply to the euphotic zone and export via sinking organic particles during the 21<sup>st</sup> century?

Can we separate the two effects?

### CESMLE projects that AMOC nutrient and volume transport decline by ~0.5% per year on average between 2006 and 2080



### CESMLE projects that AMOC nutrient and volume transport decline by ~0.5% per year on average between 2006 and 2080



### CESMLE projects that AMOC nutrient and volume transport decline by ~0.5% per year on average between 2006 and 2080



#### Changes in AMOC associated with changes in Gulf Stream



45°W

30°W

15°W

759W

60°W





Whitt (2018)

Ensemble means (34 members)

#### Changes in AMOC associated with changes in Gulf Stream

| Zonal integrals across Atlantic at 48 N, $\sigma_{	heta}$ < 27.5 kg/m <sup>3</sup> |              |               |  |  |
|------------------------------------------------------------------------------------|--------------|---------------|--|--|
| Year                                                                               | AMOCN        | AMOCV         |  |  |
|                                                                                    | $\rm kmol/s$ | $\mathbf{Sv}$ |  |  |
| 2006                                                                               | [303, 313]   | [18.3, 19.3]  |  |  |
| 2080                                                                               | [169, 184]   | [10.9, 12.0]  |  |  |
| percent change                                                                     | -43%         | -39%          |  |  |
| rate of change                                                                     | -1.8 /yr     | 10 /yr        |  |  |

Ensemble IQRs (34 members)

Sections across the Gulf Stream

| $ m GS, 64^{\circ}W,  m N$ | $ m GS, 30.5^{\circ}N,  m N$ | $ m GS,64^{\circ}W, m V$ | $GS,30.5^{\circ}N,V$ |
|----------------------------|------------------------------|--------------------------|----------------------|
| $\rm kmol/s$               | $\rm kmol/s$                 | $\mathbf{Sv}$            | $\mathbf{Sv}$        |
| [521, 547]                 | [507, 528]                   | [35.9, 37.6]             | [36.8, 38.8]         |
| [337, 366]                 | [330, 347]                   | [26.6, 28.5]             | $[28.7,\!30.0]$      |
| -34%                       | -35%                         | -25%                     | -22%                 |
| -2.4 /yr                   | -2.4 / yr                    | 13 /yr                   | 11 /yr               |

CESMLE projects near collapse of entrainment across 27.5 by 2080 in RCP8.5



CESMLE projects near collapse of entrainment across 27.5 by 2080 in RCP8.5

| Atlantic, north of 48 N |                          |  |  |
|-------------------------|--------------------------|--|--|
| Year                    | $\mathrm{EN275}$         |  |  |
|                         | $\rm kmol/s$             |  |  |
| 2006                    | $\left[27.7, 42.7 ight]$ |  |  |
| 2080                    | $\left[0.8, 2.4 ight]$   |  |  |
| percent change          | -95%                     |  |  |
| rate of change          | 44 /yr                   |  |  |

Reduced entrainment of NO<sub>3</sub> is about 4x smaller than reduced AMOC advective NO<sub>3</sub> flux

Declines in NO3 supply are associated with declines in export



Pattern of reduced PON flux across 27.5 differs qualitatively from pattern of reduced NO3 entrainment across 27.5

#### Declines in NO3 supply are associated with declines in export

| Atlantic, north of 48 N |              |              |  |  |
|-------------------------|--------------|--------------|--|--|
| Year                    | PON275       | PON100       |  |  |
|                         | $\rm kmol/s$ | $\rm kmol/s$ |  |  |
| 2006                    | [76.8, 81.9] | [118, 123]   |  |  |
| 2080                    | [32.6, 40.2] | [85, 90]     |  |  |
| percent change          | -54%         | -27%         |  |  |
| rate of change          | 57 /yr       | 44 /yr       |  |  |

Reduction in export across 27.5 (~42 kmol/s) is greater than reduction in entrainment across 27.5 (~32 kmol/s)

Key uncertainties associated with ocean physics and priorities for future research Nutrient transport highly correlated with volume transport; CMIP5 models predict 15–60% reductions in AMOC over 21<sup>st</sup> century, so results are uncertain at an O(1) level.

O(1) uncertainties associated with ocean circulation could arise from missing mesoscale dynamics, for a variety of reasons.

However, uncertainties about boundary layer and interior mixing processes are more likely smaller O(<10%) uncertainties, but non-negligible



#### danielwhitt.github.io

### Future projections of global export of POC in CESM1



In RCP8.5, CESM1 predicts:

- enhanced export at subpolar latitudes
- reduced export at subtropical latitudes

However, subpolar North Atlantic experiences largest regional reduction in export

Dramatic reductions in phytoplankton during the North Atlantic spring bloom in RCP8.5

#### CESM1 Large Ensemble (34 members)



There are implicit implications for higher trophic levels, which depend on timing and magnitude of bloom

### Source water for subpolar gyre water is largely sourced from deeper depths in the subtropics and is nutrient rich

4-year back trajectories, 50 m depth

Modeled Lagrangian float trajectories in eddy-resolving model (FLAME)



Burkholder and Lozier (2014)

CESMLE projects almost complete collapse of wintertime entrainment across 27.5 by 2080 in RCP8.5



#### Gulf Stream nutrient transport key component of Atlantic nutrient circulation: observations



### Characteristics of the nutrient distribution:

- Vertical profiles are very different north and south of the Gulf Stream
- But nearly identical when plotted as a function of density

#### Changes in AMOC associated with changes in Gulf Stream



Ensemble means (34 members)