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Abstract18

Ocean Alkalinity Enhancement (OAE) is emerging as a viable method for remov-19

ing anthropogenic CO2 emissions from the atmosphere to mitigate climate change. To20

achieve substantial carbon reductions, OAE would need to be deployed at scale across21

the global ocean. Hence, there is a need to quantify how the efficiency of OAE varies glob-22

ally across a range of space-time scales in preparation for field deployments. Here we de-23

velop a marine carbon dioxide removal (mCDR) efficiency evaluation framework based24

on the data-assimilative ECCO-Darwin ocean biogeochemistry model, which separates25

and quantifies two key factors over seasonal to multi-annual timescales: 1) mCDR po-26

tential, which quantifies the ability of seawater to store additional carbon after an al-27

kalinity perturbation; and 2) dynamical mCDR efficiency, representing the impact of ocean28

advection, mixing, and air-sea CO2 exchange. We apply this framework to virtual OAE29

deployments in five archetypal ocean circulation regimes with different mCDR poten-30

tials and dynamical efficiencies. The simulations highlight the importance of the dynam-31

ical factors, especially vertical transport, in driving differences in efficiency. To rapidly32

isolate and quantify the factors that determine dynamical efficiency, we develop a reduced33

complexity 1D model, rapid-mCDR. We show that combining the rapid-mCDR model34

with existing ECCO-Darwin output allows for rapid characterization of OAE efficiency35

at any location globally. Thus, these tools can be readily employed by research teams36

and industry to model future field deployments and contribute to essential Monitoring,37

Reporting, and Verification (MRV) efforts.38

Plain Language Summary39

In an effort to counteract ongoing climate warming, engineering methods have been40

proposed to artificially enhance marine carbon dioxide removal (mCDR) from the at-41

mosphere by reducing the ocean’s acidity or enhancing its alkalinity — this is called Ocean42

Alkalinity Enhancement (OAE). However, implementing OAE at a scale where it would43

have a significant impact on the anthropogenic perturbation to atmospheric carbon diox-44

ide is costly and challenging, and many uncertainties remain regarding how effective OAE45

would be. This paper addresses the practical question of where and when might OAE46

be most effective, with a specific focus on exposing how regional variations in ocean cir-47

culation might lead to differences in the effectiveness of OAE. Several virtual scaled-up48

regional and multi-decadal OAE deployments are simulated in five different open-ocean49
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circulation regimes in a state-of-the-art, global model of ocean circulation and biogeo-50

chemistry. The results show that different ocean circulation regimes yield significant dif-51

ferences in the effectiveness of OAE. These results help scientists and other stakehold-52

ers understand and quantify the range of possible impacts of circulation variability on53

OAE efficiency.54

1 Introduction55

The major aim of the Paris Agreement is to reduce emissions and enhance carbon56

sinks to keep the global temperature increase well below 2 degrees in this century (Rogelj57

et al., 2018; Schimel & Carroll, 2024). This limit requires a 50% reduction in anthropogenic58

carbon dioxide (CO2) emissions by 2030, with net emissions nearly eliminated by 2050.59

This effort will require almost complete decarbonization of the world’s energy supply (Friedlingstein60

et al., 2022; Palter et al., 2023). Furthermore, the IPCC’s 6th assessment report has em-61

phasized that atmospheric CO2 removal on the gigaton scale will be necessary to reach62

net zero emissions (IPCC, 2022).63

Due to the vast carbon reservoir (i.e. the mass of carbon) in the global oceans, which64

is already a sink for roughly one quarter of anthropogenic CO2 emissions (Gruber et al.,65

2019; Friedlingstein et al., 2022), various methods for marine carbon dioxide removal (mCDR)66

have been proposed to accelerate the net transfer of carbon from the atmosphere to the67

ocean (National Academies of Sciences, Engineering, and Medicine, 2022). Ocean Al-68

kalinity Enhancement (OAE; Renforth & Henderson, 2017) is one such method proposed69

to bolster the uptake of atmospheric CO2 by the ocean. Examples of particular OAE70

approaches include: 1) reduction of seawater acidity through electrochemical processes71

(House et al., 2007), 2) deployment of alkaline substances on the surface ocean, and 3)72

enhanced weathering of alkaline minerals on land that accelerates their transfer to the73

coastal ocean (Taylor et al., 2016; Montserrat et al., 2017). See Eisaman et al. (2023)74

for a detailed technical review of various OAE approaches. Overall, National Academies75

of Sciences, Engineering, and Medicine (2022) have rated OAE efficacy as “high confi-76

dence” with durability and scalability as “medium-high”, yet the knowledge base remains77

“low-to-medium”. Thus, additional research to advance the knowledge base for OAE is78

a priority.79
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The core principle of OAE leverages tight coupling between ocean alkalinity (Alk)80

and the nonlinear marine carbonate chemistry system (Middelburg et al., 2020). OAE81

is generally focused on the deployment of Alk at, or near the ocean surface, which trans-82

forms aqueous carbon dioxide (CO2) into bicarbonate (HCO−
3 ) and carbonate ions (CO2−

3 )83

through a series of rapid acid-base reactions (Zeebe & Wolf-Gladrow, 2001). This chem-84

ical adjustment leads to a reduction in aqueous carbon dioxide (COaq
2 ) concentrations85

and thus lowers the partial pressure of carbon dioxide in seawater (pCOaq
2 ). If the Alk86

addition and pCOaq
2 reduction occur in the surface ocean, it can drive ocean uptake of87

CO2 from the atmosphere or decrease the rate of CO2 outgassing, both of which result88

in a net increase in ocean carbon uptake. If the net CO2 absorbed from the atmosphere89

remains in the surface ocean, it tends to restore surface-ocean pCOaq
2 and therefore the90

ocean-atmosphere pCO2 gradient back toward the values it would have in the absence91

of OAE deployment. The efficiency of OAE, which is typically defined by the ratio of92

moles of CO2 removed from the atmosphere per mole of deployed alkalinity, however,93

remains poorly constrained.94

For typical surface-ocean carbon chemistry, OAE has the potential to remove roughly95

0.8 moles of CO2 from the atmosphere per mole of deployed Alk (Renforth & Hender-96

son, 2017; Tyka et al., 2022). The actual amount of atmospheric CO2 removed, however,97

hinges on the complex interplay of ocean physics and biogeochemistry, and thus can de-98

viate from this value. While ocean carbonate chemistry reactions occur nearly instan-99

taneously and CO2 in the atmosphere mixes efficiently on the timescale of days, the ad-100

justment of ocean pCOaq
2 perturbations to pre-deployment levels via air-sea CO2 flux oc-101

curs over weeks to years (Jones et al., 2014; He & Tyka, 2023). This adjustment process102

takes place against the backdrop of multi-scale ocean dynamics, with timescales rang-103

ing from seconds to thousands of years (Williams & Follows, 2011). Ocean dynamics strongly104

influence the marine carbonate system state and can sequester OAE-perturbed waters105

to depth far away from the air-sea interface, thereby reducing or delaying the removal106

of atmospheric CO2 and the efficiency of OAE. Furthermore, the total reduction of at-107

mospheric CO2 can be smaller than the mCDR-driven sequestration, due to carbon cy-108

cle feedbacks with other components of the Earth System (see e.g., Tyka, 2024).109

Several prior investigations have used numerical ocean models to show that the ef-110

ficiency of OAE is subject to considerable regional and temporal variability across the111

global ocean and specifically that the ocean circulation significantly impacts OAE effi-112
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ciency (Ilyina et al., 2013; González et al., 2018; Burt et al., 2021; He & Tyka, 2023; Ya-113

mamoto et al., 2024). Most recently, Zhou et al. (2025) used a global ocean and sea-ice114

model (Community Earth System Model version 2; CESM2), forced by atmospheric re-115

analysis, to quantify how ocean dynamics shape OAE efficiency globally. However, their116

analysis was limited to pulse OAE experiments conducted for the year 1999, using a sin-117

gle model unconstrained by the ocean observations. Notably, CESM is known to exhibit118

several biases, particularly in mixed layer depth — a factor that directly affects the re-119

sponse timescale to an OAE perturbation (Griffies et al., 2009; Danabasoglu et al., 2014;120

Jones et al., 2014). As a result, some of their findings may not be fully representative121

of real-world behavior. Consequently, key questions remain unresolved. For example: (1)122

How does OAE efficiency vary across archetypal regional-scale circulation regimes? and123

(2) How do spatial variations in efficiency evolve temporally under the influence of the124

seasonal cycle and interannual climate variability? Fully addressing these high-priority125

questions requires multi-model studies, and especially the use of data-constrained mod-126

els simulating a wide range of OAE scenarios.127

In this study, we take a necessary step forward in building the knowledgebase needed128

to answer these open questions by simulating regional-scale open-ocean OAE deployments129

of monthly-to-multi-decadal duration in a data-constrained global model of ocean cir-130

culation, sea ice, and biogeochemistry/ecosystem dynamics, ECCO-Darwin (Carroll et131

al., 2020, 2022, 2024). The data constraints significantly reduce ocean physical biases132

that are common in unconstrained ocean models. For example, the representation of ocean133

mixed layer depth in data constrained ECCO-Darwin model (Forget, Fukumori, et al.,134

2015; Forget, Campin, et al., 2015; ECCO Consortium et al., 2021) generally shows sig-135

nificantly better agreement with observations compared to unconstrained models (e.g.136

Griffies et al., 2009; Tsujino et al., 2020; Treguier et al., 2023). We focus on regional and137

multi-decadal scale deployments based on the hypothesis that they might achieve a “goldilocks”138

trade-off: sufficiently small to be plausibly achievable yet sufficiently large to meaning-139

fully reduce global warming in the 21st century. We also consider continuous virtual OAE140

simulations as a practical complement to monthly “pulse” OAE simulations, since con-141

tinuous experiments better characterize the typical efficiency of OAE as it varies sub-142

stantially with time, either seasonally or interannually. We elucidate the impact of ocean143

dynamics on OAE efficiency by separating and comparing 1) the OAE potential, which144

is calculated by assuming that the Alk perturbations remain in the surface layer of a hy-145
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pothetical static ocean and that air-sea exchange fully and instantly restores pCOaq
2 to146

pre-deployment levels; and 2) the dynamic efficiency of OAE, which is computed by dif-147

ferencing the simulated ocean CO2 flux from a counterfactual baseline simulation with-148

out OAE but having an otherwise identical dynamical ocean, normalized by OAE po-149

tential. Unlike previous studies (e.g. He & Tyka, 2023; Tyka, 2024), which combine both150

OAE dynamical efficiency and potential into a single metric, we separate and individ-151

ually quantify the impact of these two key components in our analysis. We note there152

is precedent for this separation of terms (Wang et al., 2023), with previous studies also153

making a distinction between the maximum expected impact and the transient approach154

to that impact (Yamamoto et al., 2024). We note that Yamamoto et al. (2024) take a155

different approach to their computation by normalizing relative to direct air capture and156

their efficiency term is dynamic, while the mCDR potential term is more implicit.157

Although the efficiency of OAE is nominally different across space-time domains,158

we build new understanding by presenting a series of five key case studies of OAE de-159

ployments at different locations, representative of distinct open-ocean circulation archetypes.160

The regimes include a quiescent subtropical gyre contrasted with four energetic regimes,161

including one in each of the following: a mid-latitude western boundary current, the Antarc-162

tic Circumpolar Current, a low-latitude equatorial upwelling region, and a high-latitude163

deep-water formation region. Our results support the hypothesis that vertical transport164

processes have an outsized impact on OAE efficiency. Hence, we isolate and more fully165

quantify the sensitivity of OAE efficiency to vertical transport processes by developing166

and analyzing a 1D vertical ocean biogeochemical model, called rapid-mCDR.167

2 Methods168

This section defines the metrics used to quantify mCDR efficiency by OAE (Sec-169

tion 2.1), describes the virtual OAE deployments and related numerical experiments (Sec-170

tion 2.2), reviews the ECCO-Darwin state estimate framework (Section 2.3), and presents171

the new 1D rapid-mCDR model for simulation of OAE-attribued Dissolved Inorganic Car-172

bon (DIC) and Alk cycling and mCDR efficiency (Section 2.4).173
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2.1 Metrics for Quantifying OAE-driven Atmospheric CO2 Removal174

Net CO2 removal from the atmosphere to the oceans ∆DICtot (in mol C) is eval-175

uated by integrating the difference in CO2 flux (∆fC in mol C m−2 s−1) between OAE-176

perturbed simulations (with alkalinity perturbation ∆Alktot in mol Alk) and the base-177

line simulation, integrated over a discrete time interval t after deployment:178

∆DICtot(t) =

∫ ts+t

ts

∫
A

∆fC dA dt, (1)

with ts marking the start of OAE deployment and A the global ocean surface area. Hence,179

Eq. 1 is equivalent to the volume integral of the OAE-perturbation to the local concen-180

trations
∫
V
∆DIC(t)dV over the ocean volume V where ∆DIC is the perturbation from181

the baseline DIC concentration (in mol C m−3). Throughout the paper, the subscript182

tot on DIC and Alk denotes total mass in the ocean (units of moles) in contrast to con-183

centrations (units of mol m−3) in the absence of subscript tot.184

In the numerical experiments presented here, the atmosphere is approximated as185

an infinite, imperturbable reservoir of CO2 and the atmospheric and ocean physical states186

are unperturbed by OAE; the OAE-perturbation therefore acts to decrease pCOaq
2 . Other187

net ocean carbon chemistry responses to OAE are quantified similarly as differences be-188

tween the OAE-perturbed and baseline simulations.189

As in previous work (He & Tyka, 2023; Zhou et al., 2025), we define the practical190

measure of mCDR efficiency (η) as the ratio between the cumulative number of moles191

DIC absorbed by the ocean and cumulative number of moles Alk that were added to192

the surface ocean:193

η(t) =
∆DICtot(t)

∆Alktot(t)
, (2)

where the time-dependent ∆DICtot(t) is calculated from simulation output using Eq. 1194

and time-dependent ∆Alktot(t) is calculated from simulation forcing, which can be ex-195

pressed as a surface-ocean alkalinity flux perturbation per unit time and deployment area196

(Ad) associated with the OAE introduced Alk ∆fA:197

∆Alktot(t) =

∫ ts+t

ts

∫
Ad

∆fA dA dt. (3)
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Again, Eq. 3 is equivalent to the volume integral of the OAE-perturbation in the local198

concentrations
∫
V
∆Alk(t)dV over the ocean volume V . We note that if a given alka-199

linity perturbation ∆Alktot is added instantaneously and uniformly to a surface-ocean200

area Ad at a time ts, ∆fA = δ(t − ts)∆Alktot/Ad, where δ(t) is the Dirac delta func-201

tion. We note that our definition of efficiency η(t) in Eq. 2 and in He and Tyka (2023)202

are equivalent. Throughout the paper, a variety of metrics like η will be used that for-203

mally have units of moles DIC per mole Alk, and this mole per mole unit will be im-204

plied but not stated explicitly.205

To provide insight into the mechanisms regulating η, we next characterize and sep-206

arate the contributions of the OAE perturbation ∆Alktot and the mCDR response ∆DICtot207

to ∆pCOaq
2 , following Takahashi et al. (1993):208

∆pCOaq
2 ≈ ∂pCOaq

2

∂DIC

∆DICtot

V
+

∂pCOaq
2

∂Alk

∆Alktot
V

. (4)

To ensure the accuracy of this expression, the perturbations ∆DICtot and ∆Alktot should209

be small and evenly distributed over a volume V with approximately constant sensitiv-210

ities ∂pCOaq
2 /∂DIC and ∂pCOaq

2 /∂Alk. Other factors that are typically important drivers211

of variability in pCOaq
2 , such as temperature and salinity, are identical in the OAE-perturbed212

and baseline simulations and thus do not appear in Eq. 4.213

A useful relationship, which we call mCDR potential, can be defined as a ratio of214

net CO2 uptake (∆DICtot,pot) and the amount of alkalinity added (∆Alktot) to seawa-215

ter, assuming complete air-sea equilibration of the alkalinity perturbation by substitut-216

ing ∆pCOaq
2 = 0 into Eq. 4 and rearranging:217

mCDRpot ≡
∆DICtot,pot

∆Alktot
= −∂pCOaq

2

∂Alk

(
∂pCOaq

2

∂DIC

)−1

= −DIC

Alk

γAlk

γDIC
, (5)

where ∆DICtot,pot is defined to be the ∆DICtot required to adjust pCOaq
2 to the base-218

line state; i.e., ∆pCOaq
2 = 0. The pCOaq

2 sensitivities to DIC and Alk are γDIC = DIC
pCOaq

2

∂pCOaq
2

∂DIC219

and γAlk = Alk
pCOaq

2

∂pCOaq
2

∂Alk (e.g. Sarmiento & Gruber, 2006, page 329), and γDIC is the220

familiar buffer or Revelle factor (Takahashi et al., 1980). Typical latitude dependencies221

or maps of DIC, Alk, γDIC , and γAlk can be readily found in textbooks and published222

literature, for example in Takahashi et al. (1993) or Chapter 8 of Sarmiento and Gru-223

ber (2006).224
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We note that our definition of mCDR potential differs from that of Wang et al. (2023),225

who use CDR potential to refer to the total DIC uptake for a given alkalinity injection,226

i.e., ∆DICtot,pot in our terminology. Our definition, in which the potential represents227

the DIC uptake per unit Alk injected, highlights the intrinsic dependence of the poten-228

tial on the unperturbed ocean baseline state and facilitates easier comparisons between229

experiments with different magnitudes of injected alkalinity.230

Since the mCDRpot defined by Eq. 5 varies across time and space, it is necessary231

to average values to obtain a single representative numeric estimate of mCDRpot. The232

potential carbon removal ∆DICtot,pot for a given OAE experiment can be then expressed233

as:234

∆DICtot,pot(t) ≈ ⟨mCDRpot⟩∆Alktot(t), (6)

where the brackets around ⟨mCDRpot⟩ indicate a space-time average of surface-ocean235

mCDRpot in the baseline simulation where and when the alkalinity is deployed. We quan-236

tify mCDRpot in Eq. 5 offline using Python toolbox for solving the marine carbonate sys-237

tem (PyCO2SYS ; Humphreys et al., 2022) and the relevant gridded output from the base-238

line ECCO-Darwin simulation, as well as with the OceanSODA-ETHZ dataset (Gregor239

& Gruber, 2021) for comparison (see Supporting Information Text S2).240

Hypothetically, mCDRpot = η and ∆DICtot,pot = ∆DICtot if 1) all ∆Alk re-241

mains in the surface-ocean layer at the location where it is injected and 2) the air-sea242

CO2 flux perturbation ∆fC transfers exactly the atmospheric CO2 needed to restore the243

OAE-perturbated ∆pCOaq
2 to zero. However, it will be shown that the efficiency of OAE244

η is typically (but not always) substantially less than mCDRpot, even over decadal timescales.245

This is primarily because OAE-perturbed waters can be isolated from atmospheric ex-246

change for up to thousands of years (England, 1995) via downward ocean transport and247

mixing driven by circulation dynamics. Hence, we define the dynamical mCDR efficiency248

as:249

mCDReff (t) =
η(t)

⟨mCDRpot⟩
. (7)

Eq. 7 separates η into a product of potential (mCDRpot) and dynamical-efficiency250

(mCDReff ) components, which provides a meaningful separation into drivers relating to251
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carbon chemistry and ocean dynamics, respectively. The time dependence of mCDReff252

or η is governed by the type of OAE deployment, particularly by the temporal evolution253

of the deployed alkalinity.254

In order to evaluate the significance of vertical transport of OAE-modified waters255

and specifically the extent to which their mCDR potential has been realized as a func-256

tion of space and time, we define mCDRequil, following Wang et al. (2023). mCDRequil257

is a space-time resolved version of mCDReff , where ∆DICtot and ∆Alktot are replaced258

with local ∆DIC and ∆Alk concentrations:259

mCDRequil =
1

⟨mCDRpot⟩
∆DIC

∆Alk
. (8)

mCDRequil values of one indicate that the mCDR has been fully realized relative260

to the potential where the alkalinity was deployed, while values closer to zero suggest261

that only a small fraction of that potential has been achieved. To better understand the262

vertical extent of OAE-modified waters, we will show the vertical distribution of horizontally-263

averaged mCDRequil values for select deployments. All points where ∆Alk = 0 are omit-264

ted from the calculation.265

Finally, in order to better characterize overall mCDR efficiency of deployment lo-266

cation and seasonality/interannual variability of net CO2 uptake for continuous OAE267

experiments with a time-constant Alk flux fA over many years, we define mCDRp
eff :268

mCDRp
eff (t) =

1

⟨mCDRpot⟩
∂/∂t ∆DICtot

∂/∂t ∆Alktot
=

1

⟨mCDRpot⟩

∫
A
∆fC(t) dA

Ad ∆fA
, (9)

which is the ratio of the OAE-perturbed CO2 flux to the Alk flux at a given time nor-269

malized by mCDRpot (rather than integrating the fluxes in time since the beginning of270

the experiment as in mCDReff and η). Thus, mCDRp
eff (t) is a rate-based measure of ef-271

ficiency at a given time, whereas η(t) and mCDReff (t) are cumulative ocean reservoir-272

based measures of efficiency at a given time. The superscript ‘p’ stands for “pulse” for273

reasons described below in Section 2.2.5.274
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Symbol/Term Brief Explanation Section Guide

mCDRpot mCDR potential, net CO2 uptake per unit of de-

ployed alkalinity assuming instantaneous and com-

plete adjustment of ocean pCOaq
2 with respect to the

unperturbed baseline situation via air-sea CO2 flux

Section 2.1

η A cumulative measure of net CO2 uptake efficiency

per unit of deployed alkalinity based on the OAE-

perturbed ocean reservoirs of alkalinity and carbon

Section 2.1

mCDReff A cumulative measure of the dynamical efficiency of

OAE relative to its potential

Section 2.1

mCDRequil A local, space-time resolved measure of the dynamical

efficiency of OAE relative to its potential at the de-

ployment location

Section 2.1

mCDRp
eff A rate-based measure of the efficiency of OAE com-

puted from the continuous OAE experiments, but

designed to represent the efficiency of pulse experi-

ments.

Section 2.2.5

Baseline Simulation Unperturbed ECCO-Darwin state estimate, represent-

ing real-world ocean conditions

Section 2.3

Continuous Experiment Persistent, steady OAE injection flux over multiple

years

Section 2.2.3

Pulse Experiment A transient or instantaneous OAE injection flux Section 2.2.4

rapid-mCDR(DeployAve) Reduced-complexity rapid-mCDR model results ne-

glecting horizontal transport

Section 2.4

rapid-mCDR(TransAve) Rapid-mCDR model results accounting for horizontal

transport

Section 2.4

Table 1. List of key terms/quantities and the associated sections in this paper.
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2.2 Virtual OAE deployments275

In this section, we describe our numerical experiments, including the baseline sim-276

ulation and a suite of regional continuous and pulse OAE deployment scenarios that pro-277

vide the basis for estimating the metrics described in Sec. 2.1 and answering the ques-278

tions posed in the Introduction.279

2.2.1 Baseline simulation280

The impacts and net CO2 uptake attributed to OAE are evaluated with respect281

to the baseline simulation. This baseline simulation of the full time-evolving global phys-282

ical and biogeochemical state, including the air-sea CO2 flux and surface-ocean carbon-283

ate state necessary for calculating the metrics in Sec. 2.1, represents the natural ocean284

state in the absence of any OAE perturbations from January 1, 1995 to December 31,285

2017. The simulation is similar to several previous runs of ECCO-Darwin, which gen-286

erally agree well with in-situ observations over the global ocean and in various OAE de-287

ployment sites (see Supporting Information Text S1 and Figs. S1–S2). The methods un-288

derpinning ECCO-Darwin are briefly summarized in Sec. 2.3.289

2.2.2 OAE deployment sites290

Five deployment regions were chosen to be representative of diverse dynamical and291

biogeochemical open-ocean conditions that serve as archetypes to help us build under-292

standing of how various ocean circulation regimes impact OAE efficiency. Figure 1 and293

Table 2 describe the chosen OAE deployment sites. The Supporting Information Figs.294

S3 and S2 illustrate the surface ocean context of the five regions and demonstrate that295

ECCO-Darwin provides a realistic representation of surface ocean conditions.296

The following five mCDR experiments are considered:297

• The North Atlantic Subduction (NAS) experiment represents unique conditions298

found in subpolar regions associated with subduction driven by heat loss, sea-ice299

formation and brine rejection, strong seasonally-driven vertical mixing, and sea-300

sonal biological CO2 uptake.301

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 1. OAE deployment sites considered in this study.

• The Western Boundary Current (WBC) experiment is representative of mid-latitude302

conditions with strong horizontal currents and shear, along with intense vertical303

mixing.304

• The Antarctic Circumpolar Current (ACC) experiment represents conditions found305

in the Southern Ocean, which are associated with strong zonal currents, seasonal306

sea-ice cover, large-scale upwelling fronts, and seasonal biological uptake.307

• The Equatorial Upwelling (EU) experiment is centered over the narrow upwelling308

zone of the Tropical Pacific Ocean and is characterized by strong CO2 outgassing309

and biological uptake; its interannual variability tends to be dominated by El Niño–Southern310

Oscillation events (ENSO), which are significant relative to the seasonal cycle.311

• The Subtropical Gyre (STG) experiment is centered over a region dominated by312

relatively slow surface-ocean currents and weaker primary production. It is po-313

sitioned near the eastern margin of the North Pacific Subtropical Gyre, mainly314

because site selection closer to land should enhance deployment feasibility.315

2.2.3 Continuous OAE deployments316

Alkalinity is released at each site using continuous and pulse release protocols. For317

continuous OAE experiments, a constant Alk flux fA is applied to the ECCO-Darwin318

surface-ocean layer (which is 10 m thick) over a regionally-defined deployment site from319

January 1995 to December 2017. Continuous experiments are performed for all five de-320

ployment sites described in Section 2.2.2.321
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For each of these experiments, an area-integrated alkalinity flux
∫
fAdA = 3.33×322

107 mol Alk s−1 is applied over a horizontal area A ≈ 270× 103 km2 and characteris-323

tic length scale
√
A ≈ 500 km. The amount of deployed Alk is such that each exper-324

iment has the potential to remove ∆DICpot = 10−2 Pg C yr−1 from the atmosphere,325

assuming that mCDRpot= 0.8. In reality, mCDRpot is not 0.8 in all of the OAE deploy-326

ment regions. As discussed in Sec. 3.1, mCDRpot ranges from about 0.75 at the equa-327

tor to 0.9 at the poles, with 0.8 being a representative global-mean value. Additionally,328

the true ∆DIC in each experiment will differ from the associated ∆DICpot due to ocean329

dynamics.330

The choice of a deployment area A and OAE flux fA are somewhat arbitrary, and331

the results will depend on these choices. However, we expect the results to be fairly in-332

sensitive to modest reductions or increases in the area for these multi-decade experiments333

because 1) the ocean tends to mix material laterally over a large area on these timescales334

and 2) the model grid cells are nearly 100 km wide with no capability to treat subgrid-335

scale plume physics and chemistry. Furthermore, the results are expected to be relatively336

insensitive to modest adjustments of fA.337

We note that the magnitude of ocean net CO2 uptake, pH perturbations, and other338

possible environmental impacts, which will be specific to the particular OAE approach339

used (and might include inorganic mineral precipitation and impact on marine food web340

via the introduction of micro-nutrients and trace metals), are expected to be strongly341

correlated with the magnitude of the OAE Alk flux. In this work, we do not explore these342

environmental impacts in depth, as they are specific to the particular OAE approach.343

2.2.4 Pulse OAE deployments344

For two deployment sites associated with strong seasonality in mCDR efficiency345

(NAS and ACC), we performed three additional “pulse” experiments with shorter Alk346

deployments. Although the duration of the Alk pulse in these experiments may appear347

long, we stress that these timescales are fairly short compared to typical annual-to-multi-348

annual timescales associated with OAE-attributed net CO2 removal (He & Tyka, 2023).349

For two monthly-pulse experiments, OAE is applied for a duration of 31 days, start-350

ing on January 1, 1995 and July 1, 1995; these monthly-pulse experiments are termed351

Jan1995 and Jul1995 experiments, respectively. The monthly-pulse experiments were352
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chosen because they are perceived to be the months associated with approximately min-353

imum and maximum mCDReff . For these experiments, the magnitude of the Alk flux354

is such that each of the pulse experiment has the potential to remove 10−2 Pg C from355

the atmosphere (assuming mCDRpot = 0.8).356

For the yearly-pulse OAE experiments, Alk is deployed during a single year (from357

January 1st 1995 to December 31st 1995) and the magnitude of the Alk flux is equal to358

that of the monthly pulse experiments, so the potential CO2 removed from the atmo-359

sphere is roughly 12 times larger than in each of the monthly-pulse experiments. We re-360

fer to these experiments as Yr1995 experiments.361

2.2.5 Efficiency of pulse OAE estimated from continuous experiment362

In this study, we focus primarily on continuous OAE deployments, as they allow363

us to extract expanded insights into mCDR efficiency from each simulation compared364

to single pulse experiments. As shown in Zhou et al. (2025) and further demonstrated365

in our results, mCDR efficiencies derived from pulse experiments exhibit substantial sen-366

sitivity to the deployment month, often persisting more than a decade after the pertur-367

bation. Moreover, as discussed in Sec. 3.3.2, we demonstrate that a representative mCDR368

efficiency for an ensemble of pulse experiments, initiated across different months, can be369

effectively estimated using output from the continuous experiments and the derived met-370

ric mCDRp
eff . Here we describe and schematically illustrate the relationship between pulse371

experiments and continuous experiments using Fig. 2.372

We first consider a pulse experiment deployed over a surface-ocean area Ad instan-373

taneously at time t = 0 (Fig. 2a). The net CO2 exchange evolves on monthly to multi-374

annual timescales, superimposed on the background circulation-driven transport of OAE-375

modified waters. In Fig. 2a, a trajectory of OAE-modified waters and the correspond-376

ing values of δDICtot are shown at multiple equidistant time intervals after start of the377

deployment (δDICtot is the incremental increase in ocean DICtot or the net CO2 flux378

integrated over the OAE-impacted area during one time increment ∆t). The value of η379

at time t = n∆t is calculated by summing the product of ∆t · δDICtot over all time380

increments along the trajectory of OAE-perturbed waters (i.e., over ∆t, 2∆t, . . . , n∆t)381

and normalizing by the product of ∆t ·∆Alktot (see Eq. 2). The value of mCDReff is382

computed by normalizing η with the mCDRpot at the time of deployment (Eq. 7).383
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We next consider a continuous OAE experiment deployed over the same surface-384

ocean area Ad, starting at time t = 0 (Fig. 2b). This continuous deployment can be385

conceptualized as a series of n instantaneous incremental deployments, with each incre-386

ment injecting δAlktot = ∆Alktot/n over successive time intervals ∆t, 2∆t, . . . , n∆t.387

The value of mCDRp
eff at time n∆t, where n is the total number of time increments in388

the deployment, is calculated by summing δDICtot from each incremental deployment389

at time n∆t, normalized by the product of δAlktot and mCDRpot (Eq. 9). For the first390

pulse, normalized δDICtot is evaluated at time n∆t after deployment, for the second in-391

crement at time (n−1)∆t, and for the last increment at time ∆t after deployment. This392

summation accounts for multiple deployment trajectories (each corresponding to the space-393

time evolution of one of the incremental deployments), covering the time interval from394

0 to n∆t — this is similar to a summation of the net CO2 flux for the pulse experiment.395

In summary, mCDReff time integrated in a pulse experiment is akin to integration396

of normalized net CO2 flux along a single deployment trajectory, while mCDRp
eff is in-397

tegrated across multiple incremental deployment trajectories. For an idealized steady-398

state ocean we expect the two quantities to be exactly equal. However, since the real ocean399

is far from steady-state, due to seasonal and interannual variability for example, mCDRp
eff400

represents mCDReff as derived from an ensemble of back-to-back pulse experiments, each401

initialized to capture the variability across a representative range of space-time-evolving402

ocean conditions.403

2.3 ECCO-Darwin Description404

The ECCO-Darwin model and data assimilation methods have been extensively405

described in the literature (e.g., Brix et al., 2015; Manizza et al., 2019, 2023; Carroll et406

al., 2020, 2022; Bertin et al., 2023). In particular, a technical description of the ECCO-407

Darwin model set-up, observational constraints, and optimization methodology is pre-408

sented in Carroll et al. (2020). In this study, we use a coarser-resolution (1◦ vs. 1/3◦ hor-409

izontal grid spacing) version of the Carroll et al. (2020) solution. Below, we provide a410

brief introduction to ECCO-Darwin and highlight the unique features of this model that411

are essential for our OAE studies.412

The Lat-Lon-Cap-90 (LLC90) version of ECCO-Darwin used in this paper has 1◦413

nominal horizontal grid spacing, spans 1992–2017, and is based on ocean circulation and414
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Figure 2. Schematic representing (a) a pulse OAE deployment and (b) continuous OAE

deployment. Dark blue boxes represent the OAE injection area and light blue boxes represent

trajectories of OAE-impacted waters across space and time; yellow arrows indicate net CO2 up-

take. δDIC and δAlk are the DIC increase due to net CO2 flux and Alk deployment over time

increment ∆t.
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physical tracers (i.e., temperature, salinity, and sea ice) from the Estimating the Circu-415

lation and Climate of the Ocean (ECCO) Version 4 release 4 solution (V4r4; ECCO Con-416

sortium et al., 2021; Forget, Campin, et al., 2015). Horizontal grid spacing varies from417

110 km at mid-latitudes to roughly 42 km at high latitudes. The vertical grid spacing418

increases from 10 m near the surface to 457 m near the seafloor. Since the horizontal dis-419

cretization is insufficient to resolve mesoscale eddies, their impact on large-scale ocean420

circulation is parameterized using the Redi (1982) and Gent and McWilliams (1990) schemes;421

vertical mixing is parameterized with the Gaspar et al. (1990) scheme.422

The ECCO V4r4 circulation estimate is used at each time step to drive an online423

biogeochemistry and ecosystem model developed by the Massachusetts Institute of Tech-424

nology Darwin Project (Follows et al., 2007; Dutkiewicz et al., 2015, 2020). In this ver-425

sion of the model, the Darwin model does not feedback on the ECCO circulation. The426

Darwin model includes the cycling of organic and inorganic carbon, phosphorus, iron,427

silica, oxygen, and alkalinity. Carbonate chemistry is based on the efficient solver of Follows428

et al. (2006). Air-sea CO2 flux is computed using the parameterization of Wanninkhof429

(1992) and forced with atmospheric partial pressure of CO2 from the zonally-averaged430

National Oceanic and Atmospheric Administration Marine Boundary Layer Reference431

(NOAA MBL) product (Andrews et al., 2014). The Darwin ecology includes five large-432

to-small phytoplankton functional types (diatoms, other large eukaryotes, Synechococ-433

cus, and low- and high-light adapted Prochlorococcus), along with two zooplankton types434

that graze preferentially on either large eukaryotes or small picoplankton.435

Physical observations are assimilated using the adjoint method (i.e., 4-D-Var; Wun-436

sch et al., 2009; Wunsch & Heimbach, 2013), which minimizes a weighted least squares437

sum of model-data misfit (i.e., a cost function) to optimize initial conditions; time-varying438

surface-ocean boundary conditions; and time-invariant, three-dimensional mixing coef-439

ficients for along-isopycnal, cross-isopycnal, and isopycnal thickness diffusivity. Because440

the initial conditions, surface boundary conditions, and mixing coefficients are estimated441

as part of the adjoint-method optimization, the ECCO ocean circulation estimate has442

negligible drift and therefore does not require spin-up. The biogeochemical model is op-443

timized in an additional step from the circulation using a low-dimensional Green’s Func-444

tions approach (Menemenlis et al., 2005) to assimilate a variety of biogeochemical ob-445

servations and adjust Darwin initial conditions and ecological parameters. We neglect446

the first 3 years of model simulation due to biogeochemical spin-up. The LLC90 ECCO-447
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Darwin version closely matches the previously-published solution (Supporting Informa-448

tion Fig. S4).449

2.4 Rapid-mCDR: 1D model for mCDR simulations450

At the present time, the ECCO-Darwin simulations discussed in the previous sec-451

tion might be computationally too expensive for simulating and quantifying OAE effi-452

ciency, especially if a large number of OAE deployment sites and seasons are considered.453

To provide a numerically-efficient approach and isolate and elucidate interactions between454

OAE and vertical transport processes, we next develop a 1D model rapid-mCDR which455

simulates the tight coupling between OAE-modified Alk and DIC and solves for con-456

servation equations for these quantities in Eulerian form:457

∂

∂t
∆Âlk = − ∂

∂z

(
w∗∆Âlk

)
+

∂

∂z

(
K

∗ ∂

∂z
∆Âlk

)
+

δzk,0
∆z1

f̂Alk, (10)

∂

∂t
∆D̂IC = − ∂

∂z

(
w∗∆D̂IC

)
+

∂

∂z

(
K

∗ ∂

∂z
∆D̂IC

)
− δzk,0

∆z1
∆f̂C , and (11)

∆f̂C = κ∗(1− a∗ice)

(
∂pCOaq

2

∂Alk

∗

∆Âlk +
∂pCOaq

2

∂DIC

∗

∆D̂IC

)
, (12)

where ∆DIC, ∆Alk represent OAE perturbations of DIC and Alk concentrations, and458

∆fC is the net CO2 flux from the OAE-perturbed simulation with respect to the base-459

line simulation. Variables w and K are 3D vertical velocity and diffusivity, κ is the pis-460

ton velocity, and aice is sea-ice cover — all these variables are taken from the baseline461

simulation, as they are not modified by OAE in our experiments. φ̂ and φ∗ represent horizontally-462

integrated values of φ over the global ocean and horizontally-averaged values of rapid-463

mCDR forcing φ over the OAE-impacted area, respectively. The value of δzk,0 is 1 for464

the uppermost rapid-mCDR vertical level and zero otherwise, and ∆z1 represents the465

ocean depth represented by that layer.466

Eqs. 10 and 11 relate the time derivative of ∆Âlk and ∆D̂IC (terms on the left467

hand side of these two equations) to the vertical advection and diffusion terms (first and468

second term on the right hand side of these equations) and prescribed Alk deployment469

rate or OAE-attributed net CO2 uptake (the last terms in Equations 10 and 11, respec-470

tively). These two equations are derived by simplifying ECCO-Darwin budget equations471
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(Supporting Information Text S3), guided by analysis of the budget terms in the five regional-472

scale OAE experiments (Supporting Information Figs. S5-S6). The following two approx-473

imations are used: 1) the biological source term is neglected and 2) the products of ver-474

tical velocity and Alk perturbations are linearized as: ̂w∆Alk ≈ w∗∆Âlk. This approx-475

imation neglects correlation between the vertical velocity and ∆Alk over the OAE-impacted476

regions. A similar approximation is made for DIC and diffusion terms in the conserva-477

tion equation.478

Eq. 12 represents the horizontally-integrated net CO2 flux due to OAE, which is479

a function of ocean-surface perturbations ∆Âlk and ∆D̂IC and pCOaq
2 sensitivities. The480

pCOaq
2 sensitivities were estimated from the surface-ocean conditions in the baseline sim-481

ulation using PyCO2SYS. The rapid-mCDR equations are solved for 50 vertical levels482

(which coincide with the ECCO-Darwin vertical levels) using a 1-day time step. The nu-483

merical finite difference scheme uses an implicit Euler method for time derivatives, which484

ensures numerical stability. A simple numerical stability analysis and sensitivity study485

indicates that the daily time step is sufficient (not shown). At the ocean floor, we as-486

sume net zero flux of ∆Âlk, ∆D̂IC, which is used as a bottom boundary condition for487

Eqs. 10-11. We initialize rapid-mCDR at January 1, 1995 (before the start of OAE de-488

ployments), at which time the Alk and DIC perturbations are set to zero. Rapid-mCDR489

is then integrated through the ECCO-Darwin period (January 1st, 1995 to December490

31st, 2017).491

We note that rapid-mCDR is a 1D model that simulates vertical processes only,492

and therefore it does not explicitly represent the impact of horizontal transport (advec-493

tion and diffusion) on OAE. Horizontal transport can however be implicitly represented494

by providing the required inputs for rapid-mCDR (w∗, K
∗
and pCOaq

2 sensitivities in495

Equation 12) following the deployment trajectory (i.e., the space-time evolution of the496

OAE perturbation), which essentially “transports” the rapid-mCDR vertical column along497

that trajectory. In this work, rapid-mCDR inputs are taken as the spatially-averaged val-498

ues over OAE-impacted regions that are defined using two distinct averaging approaches:499

• DeployAvg : This is the simplest approach, which neglects all horizontal transport.500

Here rapid-mCDR inputs are averaged horizontally over the deployment site only.501

In this method, all OAE and DIC perturbations, as well as CO2 uptake, are com-502

puted at the deployment site. This approach is therefore appropriate for deploy-503
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ment sites with relatively weak horizontal transport. Results from rapid-mCDR504

using this method are referred to as “rapid-mCDR(DeployAve)”.505

• TransportAvg : This approach accounts for the space-time horizontal advection and506

diffusion of the rapid-mCDR water column — which is driven by surface-ocean507

currents. In this method, ocean conditions are computed as an area-weighted mean508

over the region where OAE modifies surface pCOaq
2 , with the weights being pro-509

portional to ∆pCOaq
2 . Results from rapid-mCDR using this approach are referred510

to as “rapid-mCDR(TransAve)”.511

3 ECCO-Darwin results512

3.1 mCDR Potential513

Figure 3 shows global-ocean time-mean mCDRpot and its climatological seasonal514

cycle from the ECCO-Darwin and OceanSODA-ETHZ. Time-mean mCDRpot reveals a515

pronounced meridional gradient, with the lowest values (approximately 0.75 mol C/mol Alk)516

located in the tropics, progressively increasing poleward and eventually exceeding 0.9 mol C/mol Alk517

(Fig. 3a). For the same latitudinal range, values in regions dominated by western bound-518

ary currents tend to be lower than eastern boundary currents. The amplitude of the sea-519

sonal cycle of mCDRpot is below 0.1 mol C/mol Alk throughout the global ocean (Fig-520

ure 3b) and less than 0.05 mol C/mol Alk at the five deployment sites (Table 2). The521

most pronounced seasonal cycle occurs in northern mid-latitudes and polar regions, where522

the highest values are found in western boundary current regions, such as the Gulf Stream523

and Kuroshio extensions and the Brazil-Malvinas Confluence. Across the chosen five de-524

ployment sites, average mCDRpot from ECCO-Darwin ranges from 0.799 mol C/mol Alk525

(EU) to 0.854 mol C/mol Alk (NAS) (Table 2).526

Following Takahashi et al. (1993), we can understand the reasons and attributes527

of the variability of mCDRpot by recognizing that its value is the negative product of DIC/Alk528

and γAlk/γDIC (Eq. 5). The value of γDIC (the buffer or Revelle Factor) ranges from529

about 8 at the equator to 14 at the poles and γAlk ranges from roughly -7.4 to -13.3 (e.g.530

Sarmiento & Gruber, 2006), while their ratio varies comparatively little over the global531

ocean and seasons. Therefore, the variability of mCDRpot is primarily controlled by the532

variability of the DIC/Alk ratio, which ranges from about 0.83 at the equator to 0.94533

at the poles. Due to the strong correlation between surface-ocean Alk and salinity, the534
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Figure 3. mCDRpot from the baseline ECCO-Darwin simulation (left) and OceanSODA-

ETHZ dataset (right) showing (a) time-mean values over the ECCO-Darwin period (January

1995 to December 2017) and (b) magnitude of climatological seasonal cycle.
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variations of surface-ocean DIC/Alk are very similar to the variations of salinity-normalized535

DIC and are similarly controlled by the processes other than evaporation and precip-536

itation that affect DIC: ocean transport (circulation and mixing), biology, and air-sea537

flux (Takahashi et al., 1993, 2014; Gregor & Gruber, 2021).538

The meridional gradient of DIC/Alk, and hence mCDRpot, is thought to be caused539

by two main factors: the meridional gradient of solar heating and SST, which tends to540

increase surface-ocean pCOaq
2 and hence carbon outgassing at low latitudes (all else equal),541

as well as upwelling and entrainment of Alk- and DIC-rich waters at subpolar latitudes,542

which tend to enhance DIC in iron-limited regimes where biological productivity is re-543

duced (Wu et al., 2019). The seasonal variations of mCDRpot are driven by a compli-544

cated variety of different combinations of air-sea CO2 flux, ocean transport, and biol-545

ogy, with the latter often playing a leading role in the seasonal cycle in mid- to high-latitudes546

(Sarmiento & Gruber, 2006). See Carroll et al. (2022) for a recent global description of547

DIC dynamics derived from ECCO-Darwin.548

Time-mean mCDRpot computed from both datasets exhibit similar features, with549

model-data differences generally not exceeding 0.025 mol C/mol Alk. One notable dis-550

tinction is that OceanSODA-ETHZ values are marginally lower in eastern subtropical551

basins. Although both ECCO-Darwin and OceanSODA-ETHZ exhibit similar seasonal552

patterns of mCDRpot, the seasonal cycles in OceanSODA-ETHZ tend to have larger mag-553

nitudes. Nevertheless, both ECCO-Darwin and OceanSODA-ETHZ demonstrate sim-554

ilar structure in mCDRpot suggesting it is relatively accurate in both and justifying our555

use of ECCO-Darwin to quantify mCDR efficiency.556

In summary, the most effective OAE deployments, based solely on their potential557

to remove atmospheric CO2 would be over polar oceans, provided the OAE-impacted558

waters were maintained at their simulated conditions throughout re-equilibration. How-559

ever, in the next sections, when we consider ocean dynamics that are captured by the560

dynamical efficiency factor (mCDReff ), this narrative substantially changes.561

3.2 OAE impact on ocean state for continuous OAE experiments562

Before quantifying OAE efficiency, we first investigate the impact of OAE on the563

ocean state for the five continuous experiments. These results serve as an illustration only,564

because the environmental impacts are expected to scale with the magnitude of deployed565
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Alk. We examine the spatial patterns of atmospheric CO2 uptake and alteration of surface-566

ocean pH, as well as how OAE-impacted seawater mixes and subducts in the ocean in-567

terior.568

For the five continuous OAE experiments, Figure 4 shows a map of time-integrated569

net CO2 uptake due to OAE from the end of the ECCO-Darwin period (i.e.
∫
∆fc dt570

integrated from the January 1, 1995 to December 31, 2017). For all OAE deployments,571

the time-integrated net CO2 flux is largest close to the deployment site and its footprint572

is indicative of near-surface horizontal advection, with the following key features:573

• For NAS, the North Atlantic and the Norwegian Currents transport OAE-modified574

waters towards high-latitude regions, with the flow bifurcating near Iceland. As575

a result, the largest values of net CO2 flux are found at, or north of the deploy-576

ment site.577

• For WBC and ACC, predominant zonal transport results in the largest net CO2578

flux values located primarily east of the deployment sites. In particular, the strong579

Antarctic Circumpolar Current in ACC spreads the net CO2 flux eastward over580

a large region of the Southern Ocean.581

• For EU, equatorial upwelling and upper-ocean zonal flow both north and south582

of the equator spread the net CO2 flux footprint over most of the tropical/subtropical583

Pacific Ocean. The signature of cumulative net CO2 flux for EU covers the largest584

horizontal area (not shown), while the maximum magnitude is the lowest of all585

5 experiments.586

• For STG, the anticyclonic circulation associated with the subtropical gyre advects587

OAE-impacted waters towards the southwest, spreading the net CO2 flux foot-588

print west of Southern California and Baja Mexico.589

To illustrate the depth of the OAE perturbation across the five continuous OAE590

experiments, Supporting Information, Figure S8b shows the temporal evolution of the591

depth above which 95% of the deployed Alk remains. We adopt this depth threshold as592

a metric to demarcate OAE-modified waters from those unaffected by OAE. For all OAE593

experiments, the OAE perturbation spreads to deeper waters with elapsed time after de-594

ployment, with large differences occurring in the OAE perturbation depth across all ex-595

periments. By the end of the simulation, the Alk perturbation reaches depths in excess596

of 2000 m in NAS and roughly 800 m in ACC. For the other three experiments, Alk per-597
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Figure 4. Time-integrated net CO2 flux due to OAE from January 1995 to December 2017

for the 5 continuous OAE experiments. The color scale is logarithmic, highlighting variations in

CO2 uptake intensity. Isolines represent DIC increases of 0.1, 1, 5, 10, and 50 mol C m−2. Black

boxes show OAE deployment sites. Upper panel shows all 5 OAE experiments across the global

ocean; lower panels show individual OAE experiments.
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turbations remain much closer to the ocean surface and depths below roughly 500 m re-598

main largely unaffected.599

In Supporting Information Text S3 (and Figures S5 – S6) we also discuss horizontally-600

integrated budgets for DIC and Alk perturbations for the five continuous OAE exper-601

iments. These budgets separate and quantify the contributions of key processes that mod-602

ify DIC and Alk perturbations. With the exception of the air-sea interface, where the603

DIC and Alk perturbations increase due to net CO2 flux from the atmosphere and the604

prescribed Alk flux, respectively, changes to DIC and Alk perturbations are predom-605

inantly dominated by vertical ocean dynamics, while the contribution of biology is neg-606

ligible.607

Across all deployment sites, excluding EU, a pronounced seasonality characterizes608

the strength of vertical mixing and advection, coinciding with variations in mixed layer609

depth (MLD; Supporting Information, Figures S5 – S6). As the MLD deepens, DIC and610

Alk perturbations are transported into deeper waters, potentially sequestering them from611

the atmosphere (which inhibits or delays net CO2 uptake) until the MLD shoals again.612

Notably, the relative influence of vertical advection and diffusivity (i.e., mixing) varies613

significantly by deployment site. The MLD and its seasonal variability differ substan-614

tially among sites, with NAS having the deepest seasonal MLD.615

3.3 Efficiency of alkalinity enhancement616

3.3.1 Continuous OAE experiments617

For the five continuous OAE experiments, Figs. 5 and 6 show key aspects associ-618

ated with net CO2 uptake. Time series showing the total amount of deployed Alk (∆Alktot)619

and potential DIC uptake and realized net DIC uptake (∆DICtot,pot and ∆DICtot, re-620

spectively) are shown on Fig. 5. In Fig 6a, we show mCDReff , computed from the start621

of the OAE deployment (i.e., January 1, 1995) to the time shown on the x-axis. Fig. 6b622

shows mCDRp
eff filtered with a centered 1-year running-mean filter. The running-mean623

filter is applied to remove the large seasonal cycle of net CO2 uptake. Fig. 6c shows the624

time-mean seasonal cycle of mCDRp
eff over the last ten years of simulation. In Support-625

ing Information (Fig. S7) we show the time series of horizontally-averaged profiles of mCDRequil.626

The deployment locations associated with large seasonality are likely related to high sea-627

sonal dependence of pulse mCDR efficiency, which we further investigate in Section 3.3.2.628
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Figure 5. Continuous OAE experiment initiated on January 1, 1995. Time series of ∆Alktot

(black line), ∆DICtot (solid color lines), ∆DICtot,pot (dashed colored lines). The colors represent

the five different OAE deployments, as indicated by the legend.

From the perspective of potential for net CO2 removal, the deployment locations629

closer to the polar regions are associated with the highest values (i.e., the highest ∆DICtot,pot630

in Fig. 5) as already discussed above. However, the actual net CO2 removal (∆DICtot)631

is additionally modified by the dynamical efficiency, which varies substantially among632

the deployment sites (Fig. 5). In all cases, ∆DICtot is considerably lower than ∆DICpot633

throughout the 23-year experiment, which is longer than the the air-sea adjustment timescale,634

indicating a strong control of ocean dynamical processes on net CO2 removal. Fig. 5 also635

shows that the variability between sites in terms of DICtot,pot is smaller than that of DICtot,636

emphasizing the critical role that variations in ocean dynamics play in driving differences637

in OAE efficiency across the sites.638

For all continuous experiments, the dynamical efficiency (mCDReff ) curves (Fig. 6a)639

increase nonlinearly with time after deployment, exhibiting the following key character-640

istics:641

• ACC is associated with the most-rapid increase of mCDReff , where values exceed642

0.75 within 5 years after the start of OAE and also reach one of the highest val-643

ues by the end of the simulation (0.91). This is consistent with this site having644

the most rapid increase of mCDRequil in the upper ocean, as shown in Support-645

ing Information (Fig. S7).646

• For all deployments, EU is associated with the slowest initial increase of mCDReff ,647

consistent with the slowest increase of mCDRequil. However, after roughly 13 years648

after deployment its values reach that of the ACC and by the end of the simula-649
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Figure 6. Continuous OAE experiment initiated on January 1, 1995 (a) Time series of dy-

namical mCDR efficiency; (b) Centered 1-year running-mean values of mCDRp
eff ; (c) Average

seasonal cycle of mCDRp
eff over the last simulation decade. The colors represent the five different

OAE deployments, as indicated by the legend.
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tion mCDReff in this region yield the highest value of all simulations, 0.95. mCDReff650

in this region diverges from the typical shape due to strong interannual variabil-651

ity, which we discuss below.652

• For the other three experiments (STG, WBC, and NAS), mCDReff behaves re-653

markably similar over the first decade after deployment — by the end of 2017 their654

values differ by only a few percent each (0.84, 0.81, and 0.77 for STG, WBC, and655

NAS, respectively), despite considerable differences in the ocean dynamics of these656

sites.657

Next we discuss the behaviour of mCDRp
eff , as this represents the overall efficiency658

of the pulse experiment for the corresponding site. mCDRp
eff exhibits nonlinear behav-659

ior (6b) similar to that of mCDReff , but also highlights interannual variability. Note that660

for most of the experiments, mCDRp
eff is also associated with strong seasonality (Fig-661

ure 6c), which is filtered from the timeseries shown on Figure 6b. EU exhibits the largest662

interannual variability in mCDRp
eff , superimposed on the tapered nonlinear and nearly663

monotonic increase. This interannual variability is positively correlated with the mul-664

tivariate El-Niño/Southern Oscillation (ENSO) index (Wolter & Timlin, 2011, not shown),665

indicating that ENSO can have a substantial impact on net CO2 uptake in the Tropi-666

cal Pacific Ocean. We note that other locations also exhibit interannual variability in667

mCDRp
eff , albeit weaker than in EU. The values of running-mean mCDRp

eff in Fig. 6b668

can exceed one for a limited time period, which is most evident for the EU experiment.669

This does not mean that dynamical OAE efficiency exceeds 100%, rather it reflects tran-670

sient mismatches in time between net CO2 uptake and injected Alk flux, which are driven671

by ocean-atmosphere dynamics.672

Figure 6c shows that mCDRp
eff for NAS and WBC, and to some extent ACC, are673

associated with a strong seasonally-dependent response of mCDRp
eff to the constant Alk674

flux, yielding maximum values (and thus strongest net CO2 uptake) in winter and min-675

imum values in summer. Peak monthly values differ from the annual-mean values by up676

to 40%. In ACC, the magnitude of the seasonal cycle of mCDRp
eff is roughly half that677

of NAS and is shifted in phase roughly 6 months, due to its location in the southern hemi-678

sphere.679
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3.3.2 Pulse OAE experiments680

To understand how mCDReff varies seasonally as a function of deployment month,681

we use three targeted pulse OAE experiments for the NAS and ACC. Each experiment682

uses a different OAE deployment strategy, Yr1995 (year-long pulse during 1995), Jan1995683

(pulse in January 1995 only), and Jul1995 (pulse in July 1995 only), to further elucidate684

how mCDReff depends on the season of deployment. Figure 7 shows the time series of685

mCDReff from the pulse experiments and mCDRp
eff from the continuous experiments con-686

ducted at the same site, with deployment starting on January 1st, 1995.687

For the three NAS experiments, the time evolution of mCDReff is highly depen-688

dent on the month of Alk deployment (Figure 7a). By the end of simulation, Alk de-689

ployed in summer (Jul1995) reaches an efficiency of roughly 0.9 while the winter deploy-690

ment (Jan1995) is only slightly above 0.6; the efficiency of the annual deployment (Yr1995)691

lies between these two extremes. Note that the seasonality in mCDRp
eff shown in Fig. 6692

does not coincide with seasonality of mCDReff for the pulse experiment.693

For the NAS experiment, mCDRp
eff somewhat overestimates mCDReff for the Yr1995694

experiment, but it generally falls well between the values for Jan1995 and Jul1995 de-695

ployments, indicating that continuous virtual experiments can be used to characterize696

the average dynamical efficiency of an ensemble of pulse deployments distributed evenly697

throughout the seasonal cycle at this site. For the ACC experiments, seasonal variabil-698

ity in mCDReff is evident during the initial years post-deployment, but after approxi-699

mately ten years all experiments achieve nearly maximal dynamical efficiency (Figure 7b).700

Overall, the results at two sites in Figure 7 are suggestive that mCDRp
eff may be a rea-701

sonable approximation of the ensemble-average efficiency of pulse deployments.702

We emphasize that the seasonality of mCDRp
eff , which is discussed in Sec. 3.3.1,703

is likely related to, yet distinct from, the seasonality of mCDReff observed in the pulse704

experiments. The first quantifies the seasonally-dependent response of net CO2 flux to705

constant Alk forcing and the latter quantifies the response of net CO2 flux to seasonally-706

dependent Alk injection.707

4 Rapid-mCDR results708

In this section, we first compare the two versions of rapid-mCDR against ECCO-709

Darwin and discuss the difference in results when using the two spatial averaging meth-710
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Figure 7. mCDReff for monthly-pulse experiments (blue and red lines) and yearly-pulse

experiments (black lines) and mCDRp
eff for continuous experiment shown as centered 1-year

running-mean values (black dashed line); (a) NAS and (b) ACC.
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ods to approximate the impact of horizontal transport described in Section 2.4. Then711

as an example use case, we use rapid-mCDR to understand how and why mCDR effi-712

ciency varies latitudinally across a meridional section of the central Pacific Ocean.713

4.1 Evaluation of rapid-mCDR against ECCO-Darwin for the 5 OAE714

deployments715

Figure 8 evaluates mCDRp
eff from rapid-mCDR simulations against ECCO-Darwin716

across all five continuous OAE experiments. As discussed in Sec. 2.4, we expect rapid-717

mCDR(TransAve) to better reproduce ECCO-Darwin than rapid-mCDR(DeployAve)718

due to its more accurate representation of horizontal transport. Although the primary719

output of rapid-mCDR is net CO2 uptake, here we show different aspects of mCDRp
eff ,720

including:721

1. Scatter plots of monthly-mean mCDRp
eff from ECCO-Darwin and the two rapid-722

mCDR versions. These provide a measure of the overall skill of rapid-mCDR in723

emulating CO2 uptake efficiency (left panel).724

2. Time series of mCDRp
eff using a 1-year centered-running mean, showing the bias725

in rapid-mCDR simulations (middle panel).726

3. Seasonal cycle of mCDRp
eff , further indicating the skill of rapid-mCDR and sea-727

sonal bias (right panel).728

Supporting Information Fig. S7 illustrates the agreement in mCDRequil between729

ECCO-Darwin and the two rapid-mCDR versions, highlighting the consistent vertical730

Alk and DIC transport between the two models.731

For NAS, the mCDRp
eff from rapid-mCDR(TransAve) agrees well with ECCO-Darwin732

for the entire duration of the experiment (Fig. 8a). The coefficient of determination for733

the monthly-mean values of mCDRp
eff is R2 = 0.9. The rapid-mCDR(TransAve) slightly734

underestimates annual-mean values of mCDRp
eff during the first part of the simulation,735

but this underestimation is less than 0.05. The seasonal cycle of mCDRp
eff is well sim-736

ulated by this version of rapid-mCDR. The rapid-mCDR(DeployAve) somewhat over-737

estimates mCDRp
eff during most of the simulation period, except for the first five years738

after the start of deployment (Fig. 8a). While this overestimation is primarily due to the739

winter months, as revealed by comparison of the seasonal cycle, the overestimation re-740
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mains present to some degree throughout the year. The winter overestimation is likely741

dominated by the absence of sea ice for rapid-mCDR(DeployAve), which impacts both742

ECCO-Darwin and rapid-mCDR(TransAve). The spatial average of sea-ice area over the743

impacted region in ECCO-Darwin can reach up to 0.15 in the winter period (not shown),744

which is expected to reduce winter CO2 uptake (and therefore mCDRp
eff ) by roughly that745

fraction. Despite the degradation in the rapid mCDR solution due to ignoring horizon-746

tal transport in rapid-mCDR(DeployAve), the coefficient of determination R2 = 0.67747

and the time-mean bias are relatively modest.748

For WBC, both versions of rapid-mCDR closely represent ECCO-Darwin, with only749

a modest overestimation of the annual-mean values of mCDRp
eff , and rapid-mCDR(TransAve)750

providing a somewhat better match to ECCO-Darwin (Fig. 8b). This agreement holds751

for both the time series of annual-mean values and the coefficients of determination, which752

are R2 = 0.90 for rapid-mCDR(TransAve) and R2 = 0.76 for rapid-mCDR(DeployAve).753

Furthermore, the seasonal cycles from both rapid-mCDR versions generally align well754

with that of ECCO-Darwin. A similar level of performance or rapid-mCDR is observed755

for ACC, as shown in Fig.8c.756

For EU, the agreement of mCDRp
eff between ECCO-Darwin and the two rapid-mCDR757

simulations is the poorest of all five OAE experiments, with R2 = 0.74 for rapid-mCDR(TransAve)758

and R2 = 0.03 for rapid-mCDR(DeployAve) (Fig. 8d). The annual-mean comparison759

shows that rapid-mCDR(DeployAve) is unable to sufficiently represent interannual vari-760

ability, which is large in this location. rapid-mCDR(TransAve) represents this interan-761

nual variability better, likely due to the fact that it approximates horizontal transport762

and thus the dispersal of OAE-impacted waters better. Nevertheless, the mean bias av-763

eraged over the seasonal and interannual variability is relatively modest for both approaches.764

In STG, rapid-mCDR(DeployAve) significantly underestimates mCDRp
eff approx-765

imately a decade after the start of deployment, while rapid-mCDR(TransAve) agrees bet-766

ter with ECCO-Darwin (R2 = 0.31 and 0.88, respectively). The cause of this under-767

estimation is likely similar to the EU deployment, where after a number of years OAE-768

impacted waters spread across a large region, which the rapid-mCDR(DeployAve) ap-769

proach does not capture.770

In Figure 9 we demonstrate the ability of rapid-mCDR to represent mCDR effi-771

ciency for the three pulse experiments for NAS and ACC, which were previously shown772
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Figure 8. Comparison of mCDRp
eff from ECCO-Darwin and both versions of rapid-mCDR.

Left panels (a–e) show monthly-mean ECCO-Darwin vs. rapid-mCDR, along with associated

R2 values. Middle panels show time series using a 1-year centered-running mean; right panels

show monthly-mean values to provide a zoom-in period during the last 10 years of simulation.

Blue and red lines represent rapid-mCDR(TransAve) and rapid-mCDR(DeployAve), respectively.

Black line in middle and right panels shows ECCO-Darwin.
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Figure 9. mCDReff for monthly-pulse and yearly-pulse experiments in (a) NAS and (b) ACC.

Solid lines show ECCO-Darwin, dashed lines show rapid-mCDR(TransAve).

to strongly vary with deployment season. Here, only results from rapid-mCDR(TransAve)773

are shown. For NAS, rapid-mCDR agrees well with ECCO-Darwin over the first five years774

after deployment and shows some skill in representing seasonally-varying mCDReff , as775

discussed above. However, by the end of the simulation rapid-mCDR somewhat over-776

estimates mCDReff ; this overestimation is consistent for all three experiments. For ACC,777

mCDReff is overestimated by rapid-mCDR — a result that is consistent with the con-778

tinuous OAE experiments in this region. Rapid-mCDR predicts that by the end of the779

simulation mCDReff approaches a value of one, which is roughly 0.1 larger than ECCO-780

Darwin. Overall, despite its simplicity, rapid-mCDR generally reproduces the results of781

ECCO-Darwin.782

4.2 Expanding rapid-mCDR to ocean-basin scales783

In this section, we provide an example use case of rapid-mCDR to characterize dy-784

namical mCDR efficiency (mCDReff ) across space-time scales that might be prohibitively785

expensive to examine with ECCO-Darwin. We also use rapid-mCDR to isolate the phys-786
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ical processes (such as sea-ice cover or vertical mixing) that reduce mCDReff by analyz-787

ing the model’s response to modifications in the strength of these processes. This ap-788

proach would be challenging with ECCO-Darwin, as altering the strength of such pro-789

cesses in the numerical ocean model could cause unintended downstream effects in the790

simulated fields.791

We simulate Alk deployment across the meridional extent of the Pacific Ocean, cen-792

tered on 165◦W, with deployments spaced 1◦ apart in latitude from 77◦S to 52◦N. This793

latitudinal range is chosen so that each deployment represents open-ocean conditions.794

Each deployment covers a rectangular area 10◦ in longitude by 3◦ in latitude; the cen-795

tral deployment locations are shown in Fig. 10a. For all of these deployments, we use796

rapid-mCDR(DeployAve) where the inputs are taken from the baseline ECCO-Darwin797

simulation. At each deployment location, we perform three experiments, corresponding798

to the three ECCO-Darwin pulse experiments discussed in Section 2.2.4: Yr1995, Jul1995,799

and Yr1995. As with ECCO-Darwin, these experiments are run until December 31, 2017800

and the mCDReff values are evaluated at the end of simulation (roughly 23 years after801

deployment).802

Furthermore, to isolate the effects of physical processes (vertical advection, verti-803

cal diffusivity, and sea-ice cover) on mCDReff , we performed three additional sets of sen-804

sitivity experiments based on the Yr1995 experiment described above with the follow-805

ing modifications: 1) Yr1995-w0 is an experiment with vertical velocity set to zero, 2)806

Yr1995-k0 is an experiment with vertical diffusivity set to zero, and 3) Yr1995-ice0 is807

an experiment with no sea-ice cover (i.e., purely open-water conditions).808

Figure 10b shows mCDReff for the Yr1995 experiment at the end of simulation, plot-809

ted against the central latitude of each deployment location, along with profiles of time-810

mean vertical velocity and vertical diffusivity. Figure 10c shows profiles of normalized811

Alk perturbation (i.e., ∆Âlk normalized by the maximum value of all experiments) at812

the end of simulation to show the vertical extent of the OAE perturbation.813

We find that mCDReff is strongly dependent on deployment location (Fig. 10b),814

with the largest values found near the equator, at subpolar latitudes in the southern hemi-815

sphere (between approximately 60–50◦S), and at mid-latitudes in the northern hemisphere816

(between approximately 40–50◦N). The lowest values (less than 0.5) are generally found817

in subtropical regions and near the poles. High mCDReff values generally coincide with818
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upwelling regions (Fig. 10b), where Alk perturbations remain near the surface (Fig. 10c).819

Low mCDReff values are associated with downwelling regions for which the Alk pertur-820

bations are either transported to depth or spread over a substantial vertical extent (Fig. 10b-821

c).822

Figure 11 shows mCDReff for the three deployment seasons (Figure 11a) and three823

sensitivity experiments (Figure 11b). For reference, Figure 11c shows mCDRpot and sea-824

ice cover. All quantities are plotted as a function of deployment latitude. We find that825

mCDReff has a strong dependence on deployment season in the mid-latitudes and sub-826

tropics. Summer months are generally associated with higher efficiency compared to win-827

ter, which is consistent with the pulse experiments for NAS and ACC (see Section 3.3).828

The mCDReff is up to 0.3 higher in summer compared to winter, which is also consis-829

tent with the seasonality of mCDReff for the NAS pulse experiments (Sec. 3.3.2).830

We also find that sea-ice cover strongly suppresses mCDReff . The experiments shown831

in Figure 11b demonstrate that for polar OAE deployments in the southern hemisphere,832

which are under the influence of seasonal sea ice, the sea-ice cover prevents CO2 uptake833

and therefore these regions are associated with low values of mCDReff . Removing sea-834

ice cover in rapid-mCDR (Figure 11b, orange line) increases mCDReff to values close to835

one south of roughly 50◦S. Therefore, our simulations suggest that mCDR efforts will836

be much less efficient in this and other sea-ice-covered regions.837

From the two dominant ocean circulation processes, vertical velocity and diffusiv-838

ity, we find that vertical velocity dominates low-efficiency regions. That is, the vertical839

diffusivity is of secondary importance. There is only a small increase of mCDReff with840

respect to the Yr1995 experiment if the vertical diffusivity is set to zero (Figure 11b, pur-841

ple line). However, if the vertical velocity is set to zero mCDReff becomes close to one842

for most of the deployment sites (Figure 11b, green line), except for sea-ice-covered re-843

gions in the southern hemisphere.844
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Figure 10. (a) Location of rapid-mCDR deployments across the Pacific Ocean; (b) mCDReff

at the end of 2017 for Yr1995 experiment (solid black line), profile of average vertical velocity

(colored contours), and vertical diffusivity (gray contour lines with units of 10−2 m2 s−1); (c)

mCDReff at the end of 2017 for Yr1995 experiment (solid black line) and Alk perturbation nor-

malized by the maximum value of all experiments (∆Âlk; colored contours).
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Figure 11. Pacific Ocean vertical sections of mCDReff at the end of 2017 for (a) 3 different

pulse deployment seasons (Jul1995, Jan1995, and Yr1995). (b) Experiments with vertical veloc-

ity and diffusivity set to zero (Yr1995-w0 and Yr1995-k0, respectively) and simulation without

sea-ice forcing (Yr1995-ice0). (c) Average mCDRpot and variability over the deployment site

(solid black lines and gray shading, respectively); these are computed from daily-mean values

and time-mean sea-ice cover. All values are taken from and shown at the central latitude of the

deployment location.
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5 Summary and Discussion845

ECCO-Darwin is an open-source, data-constrained ocean model designed to inte-846

grate physical and biogeochemical processes in a dynamically-consistent framework. Its847

use of adjoint-based data assimilation for physical processes enables the model to fit global-848

ocean observations without relying on non-physical nudging or incremental adjustments849

(Forget, Fukumori, et al., 2015; Carroll et al., 2020). This approach preserves the inter-850

nal consistency of ocean physics and biogeochemistry, allowing for fully-closed budgets851

of conserved properties, which is an essential capability for mechanistic studies and at-852

tribution of carbon fluxes in mCDR research. Furthermore, ECCO-Darwin’s ability to853

constrain both circulation and biogeochemistry with observations enhances confidence854

in its simulation of ocean dynamics and carbon cycling, making it especially well suited855

for evaluating the efficacy and impacts of mCDR strategies.856

In this work, we designed a series of virtual ECCO-Darwin OAE deployments to857

investigate variability of mCDR efficiency (i.e. the normalized net CO2 uptake) across858

archetypal ocean circulation regimes. For two representative regions (i.e. in the North859

Atlantic subpolar gyre and over the Antarctic Circumpolar Current; NAS and ACC) we860

compare mCDR efficiency with similar experiments from a different model described by861

Zhou et al. (2025) (Supporting Material, Figure S9). In both regions, ECCO-Darwin sim-862

ulates higher mCDR efficiencies, with the largest difference observed in the NAS. This863

may reflect ECCO-Darwin’s data-constrained treatment of vertical mixing, mixed layer864

depth (MLD), and the air-sea disequilibrium (pCOaq
2 ), which are critical to OAE out-865

comes. Further inter-model comparisons are needed to better understand the processes866

driving mCDR efficiency and to identify sources of uncertainty across modeling frame-867

works.868

While our results offer valuable insight into the variability of mCDR efficiency across869

major open-ocean circulation regimes, several key limitations remain, alongside oppor-870

tunities for targeted improvements. To more accurately represent specific OAE deploy-871

ments, future work should incorporate critical biogeochemical interactions between OAE872

materials and seawater, including mineral dissolution and precipitation processes (e.g.,873

Fennel et al., 2023). Simulating mineral-based deployments and tracking their dissolu-874

tion products (e.g., Si and Fe) is also important due to potential ecological impacts (Bach875

et al., 2019). In polar regions, more realistic representations of air-sea CO2 exchange—particularly876
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through sea-ice cracks and leads—could improve flux estimates (Loose & Schlosser, 2011;877

Søren et al., 2011). Our current experiments are limited to open-ocean conditions and878

do not account for coastal environments. Accurately capturing nearshore OAE deploy-879

ments will likely require high-resolution regional models or unstructured grid approaches880

capable of resolving coastal, estuarine, and near-source dynamics (Ward et al., 2020).881

We use our ECCO-Darwin results to motivate and develop a user-friendly 1D model,882

rapid-mCDR, for rapid quantification of net CO2 uptake and mCDR efficiency. Users883

can simulate virtual OAE deployments in various ocean conditions without the need for884

supercomputing resources — which is a key advantage compared to more complex ECCO-885

Darwin simulations. Combining the 1D model approach with already-published output886

from a numerical ocean biogeochemistry model, such as ECCO-Darwin (see the Open887

Research Section), permits characterization of mCDR efficiency for any OAE deployment.888

Although rapid-mCDR is a simplified model, it reproduces ECCO-Darwin mCDR ex-889

periments relatively well, with the exception of the deployment location in the Tropi-890

cal Pacific equatorial upwelling (EU). At the two deployment sites (NAS and ACC), the891

discrepancies between ECCO-Darwin and rapid-mCDR are smaller than those between892

ECCO-Darwin and Zhou et al. (2025). The rapid-mCDR model is complementary to the893

impulse response function approach of Zhou et al. (2025); Yankovsky et al. (2024), as894

it can provide more insight into the process drivers and can be better tailored to spe-895

cific OAE deployment strategies.896

Future rapid-mCDR enhancements will focus on improving the representation of897

horizontal transport, especially in tropical regions, through either Eulerian or Lagrangian898

approaches (Lange & van Sebille, 2017; Delandmeter & van Sebille, 2019), as our results899

indicate that the horizontal transport significantly modulates mCDR efficiency for these900

regions, which can be seen from the difference between the results of the two versions,901

rapid-mCDR(DeployAve) and rapid-mCDR(TransAve) for the EU deployment. Further-902

more, we are developing a module for mCDR uncertainty quantification using Monte-903

Carlo approaches. We envision that rapid-mCDR will be a valuable tool for rapid early-904

stage evaluation of potential OAE deployments, as well as for projecting OAE efficiency905

under future climate scenarios.906
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Open Research Section907

ECCO-Darwin model output is available at the ECCO Data Portal: http://data.nas908

.nasa.gov/ecco/909

Model code and platform-independent instructions for running ECCO-Darwin and rapid-910

mCDR simulations are available at: https://doi.org/10.5281/zenodo.10562714911
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Text S1. Validation of Baseline ECCO-Darwin Simulation.

Fig. S1 compares key time-mean surface-ocean fields that impact mCDR potential

from the baseline ECCO-Darwin simulation against reference datasets. This compari-

son highlights the essential ocean conditions characterized by both chemical and phys-

ical/dynamical processes and provides the evidence that ECCO-Darwin credibly repre-

sents the processes crucial for simulating OAE. Reference sea-surface temperature (SST)

is derived from optimally-interpolated satellite and in-situ observations using the method-

ology of Reynolds, Rayner, Smith, Stokes, and Wang (2002). Sea-surface salinity (SSS),

dissolved inorganic carbon (DIC), and Alk are from the OceanSODA-ETHZ dataset

(Gregor & Gruber, 2021), which leverages a suite of observations and a two-step ap-

proach (cluster-regression) to construct gridded monthly-mean fields that represent the

global-ocean carbonate system.

The key aspects of ECCO-Darwin shown on Figure S1 are as follows:

• Polarward decrease of SST as well as the zonal gradient observed across ocean basins

(Figure S1a). The latter feature is attributed to meridional transport by large-scale ocean

gyres.

• Polarward decrease of SSS and Alk and maximum values located in subtropical re-

gions associated with high rates of evaporation (Figure S1b,d). The lowest values are

located in regions that exhibit significant sea-ice melt and/or intense precipitation.

• Poleward increase of DIC with significant hemispheric asymmetry. The lowest DIC

values are generally found in the tropics, which are associated with increased biological

productivity resulting from by upwelling-driven nutrient supply (Figure S1c).

May 6, 2025, 5:44pm
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Figure S2 compares key surface-ocean variables from the previously-published ECCO-

Darwin LLC 270 solution (Carroll et al., 2020) against the LLC90 ECCO-Darwin version

used in this work. The agreement between the two solutions shows that there is no need

for further parameter tuning in the LLC90 set-up.

Figure S3 shows the OAE deployment location and time-mean values of surface magni-

tude of horizontal velocity, vertical velocity and vertical diffusivity. These fields provide

the background ocean state onto which OAE is applied.

Figure S4 shows additional validation for the 5 OAE locations: a scatter-plots of DIC

and Alk profile from baseline ECCO-Darwin simulations against in-situ GLODAPv2.2022

observations (Olsen et al., 2020) at the 5 deployment sites studied in this work. For all five

locations, bothDIC and Alk from ECCO-Darwin generally reproduce observations, which

demonstrates that ECCO-Darwin captures the key biogeochemical variables relevant for

OAE studies in these regions.

Text S2. Estimation of mCDR potential.

We estimate mCDRpot following its definition and considering the full carbon chemistry,

as:

mCDRpot =
∂DIC

∂Alk
≈ DIC(pCOaq

2 , Alk + δAlk, SST, SSS)−DIC(pCOaq
2 , Alk, SST, SSS)

δAlk
,

(1)

where DIC is taken as a function of pCOaq
2 , Alk , sea surface temperature (SST), and

sea surface salinity (SSS), and is estimated using the PyCO2SYS (Humphreys et al.,

2022) carbonate system. In this computation, the concentration of borate and minor

ions are taken to be a function of salt concentration, as it is usually done. We take

May 6, 2025, 5:44pm



X - 4 SUSELJ ET AL.: QUANTIFYING REGIONAL EFFICIENCY OF MCDR VIA OAE

δAlk = 100 µmol kg−1. The results are not sensitive to the exact value of δAlk and we

use the monthly-mean values of the surface- ocean state.

In this approach, mCDRpot can thus be estimated from the baseline state of the ocean

(without considering the specific OAE approach) from ECCO-Darwin or any other dataset

that include required inputs for Equation 1.

In this work, we estimate mCDRpot from both the baseline ECCO-Darwin and

OceanSODA-ETHZ (Gregor & Gruber, 2021) datasets.

Text S3. Budgets of DIC and Alk perturbations due to OAE

To quantify vertical mixing and dynamics of Alk and DIC perturbations and their in-

teraction with OAE-attributed net CO2 uptake, we derive horizontally averaged equations

for Alk and DIC perturbations, as described below. We begin with the budget equations

for these two quantities as represented in ECCO-Darwin (Carroll et al., 2022):

∂DIC

∂t
= −∇(~u ·DIC) +∇K(∇DIC) +

∂DIC

∂t

∣∣∣
bio

+
∂DIC

∂t

∣∣∣
dillution

+
∂fC
∂z

, (2)

∂Alk

∂t
= −∇(~u · Alk) +∇K(∇Alk) +

∂Alk

∂t

∣∣∣
bio

+
∂Alk

∂t

∣∣∣
dillution

+
∂fA
∂z

, (3)

where symbols ~u and K are the 3-D velocity and diffusivity fields.

The terms on the left-hand-side of Equations 2 and 3 represent tendency terms. The

first two terms on the right-hand-side of the two equations are resolved advection and

parameterized turbulent and molecular diffusion, the third term (with the subscript bio)

represents biological impacts, and the fourth term (with the subscript dillution) represents

dilution due to freshwater flux through precipitation and river runoff, and the last terms

represent the air-sea CO2 exchange and Alk flux for DIC and Alk , respectively.
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Next, we horizontally integrate Equations 2 and 3 over the global ocean and compute

the difference of the budget terms for the OAE-perturbed and baseline simulation to

obtain the following two equations for DIC and Alk perturbations:

∂

∂t
∆’DIC︸ ︷︷ ︸

tendency

= − ∂

∂z
ÿ�w∆DIC︸ ︷︷ ︸

advection

+
∂

∂z

¤�
K
∂

∂z
∆DIC︸ ︷︷ ︸

diffusion

+
∂

∂t
Ÿ�∆DIC

∣∣
bio︸ ︷︷ ︸

biology

+
∂

∂z
‘∆fC︸ ︷︷ ︸

CO2 flux

and (4)

∂

∂t
∆Âlk︸ ︷︷ ︸

tendency

= − ∂

∂z
◊�w∆Alk︸ ︷︷ ︸

advection

+
∂

∂z

⁄�
K
∂

∂z
∆Alk︸ ︷︷ ︸

diffusion

+
∂

∂t
ÿ�∆Alk

∣∣
bio︸ ︷︷ ︸

biology

+
∂

∂z
‘∆fA︸ ︷︷ ︸

OAE ∆Alk

, (5)

where Alk and DIC perturbations between OAE and baseline simulations are represented

by ∆Alk and ∆DIC, respectively and the ϕ̂ represents the horiontal integral of variable

ϕ over the global ocean. To derive Equations 4 and 5, we assume that ocean circulation

and Alk/DIC dilution are not impacted by the OAE deployment, and that for advective

and diffusive terms the horizontal components become zero.

For the 5 continuousAlk experiments, Figs. S5 and S6 show the profiles of budget terms

for ∆’DIC and ∆Âlk. For all of the OAE deployments the response of biological processes

was insignificant — the biological source terms were at least 3 orders of magnitude lower

compared to the tendency terms for both ∆’DIC and ∆Âlk and are therefore not shown.

For clarity, the budget terms are shown only for the last 5 years of simulation; however,

they are representative of the entire simulation period.

In addition, Figs S5 and S6 show the mixed layer depth (MLD) as indicative of the

interface that separates highly turbulent and relatively well-mixed near-surface layer from

the stably-stratified ocean below. The MLD is diagnosed from daily averaged values of

thermodynamic fields, and since there is considerable uncertainty in characterization of
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MLD we plot its values from Boyer (de Boyer Montégut et al., 2004), Suga (Suga &

Hanawa, 1990), and Kara (Kara et al., 2003) methods.

For the NAS deployment, MLD varies most strongly and is between 400–900-m deep

during winter and early spring and shoals to about 50-m during summer. The three MLD

depth computations differ, especially during winter and early spring when the MLD is

deepest. Boyer and Suga MLD differ the most, with Boyer being consistently shallower,

while Kara MLD lies between these two extremes. For NAS, vertical diffusion transports

∆’DIC and ∆Âlk from the surface via a deepening of the MLD, which indicates presence

of strong vertical mixing. This transport is strongest when the MLD deepens substantially

during winter. Vertical advection transports near-surface ∆’DIC and ∆Âlk into upper-

ocean layers (roughly 100-m deep), while it is also responsible for a sink of ∆’DIC and

∆Âlk throughout much of the deeper layer between 200–800 m. This advective transport

appears to be fairly independent of MLD dynamics. The tendency of near-surface ∆Âlk

exhibits a strong seasonal cycle: ∆Âlk generally increases when the MLD shoals (due to

OAEAlk addition). However, when the MLD deepens, even though theAlk is added in

the near surface layer, the ∆Âlk decreases at the expense of vertical mixing associated

with a deepening of the MLD. Similar dynamics occur for ∆’DIC, except that the ∆’DIC
budget is impacted by atmospheric CO2 which also has a strong seasonal cycle peaking

in late fall and early winter — just before the MLD begins to deepen.

WBC, ACC, and STG sites share many similar characteristics, except that for ACC

the MLD is out of phase because the deployment is located in the southern hemisphere.

MLD dynamics are dominated by strong seasonality and deepen to roughly 200 m during

spring and are shallowest during late summer for the respective hemispheres. For EU, the
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MLD has weaker seasonality. The three MLD criteria agree well in terms of MLD depth

and seasonal variability. As for NAS, the deepening of the MLD is associated with strong

vertical diffusion of ∆’DIC and ∆Âlk from the surface within the MLD. Here vertical

diffusion tend to overshoot the MLD and indicates either underestimation of MLD by all

three MLD criterion or strong vertical mixing that extends beyond the MLD. For both of

these locations, advection transports both ∆Âlk and ∆’DIC from near-surface waters to

depth. While ACC has weak seasonality in advective transport, it is substantial for WBC.

As for NAS, surface-ocean fCO2 has strong seasonality, which is presumably related to the

seasonality of MLD and advective term. This seasonality is less apparent for ACC and

STG. We note that the seasonality of fCO2 can also be impacted by CO2 piston velocity.

For EU, due to its location in the tropics, has no discernible seasonal cycle of MLD. Here

diffusion generally mixes ∆Âlk and ∆’DIC from the surface downwards and advection,

while it exhibit significant temporal variations, generally transports ∆Âlk and ∆’DIC
towards the surface. This site also has seasonal transport of ∆Âlk and ∆’DIC below

150-m depth. EU is associated with strong multi-annual variability in pCOaq
2 . For the

5-year shown in Figure S5, the pCOaq
2 is significantly increased around the start of year

2016.

Text S4. Additional comparison of ECCO-Darwin and rapid-mCDR

While the main comparison of ECCO-Darwin against rapid-mCDR is shown in the main

text, Figure S7 shows additional comparison of vertically-resolved mCDRequil between

ECCO-Darwin and rapid-mCDR, along with its time evolution for all five continuous

experiments and for both both versions of horizontal averaging (rapid-mCDR(DeployAve)

and rapid-mCDR(TransAve) see main text for details).
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For all five experiments, rapid-mCDR generally captures the ECCO-Darwin profiles of

mCDRequil. In general, we find that the values with rapid-mCDR(TransAve) are closer

to ECCO-Darwin compared to values from rapid-mCDR(DeployAve) which is expected

as the former ones accounts for the horizontal advection of OAE perturbation.

Text S5. Additional figures

For the five continuous OAE experiments, Figure S8a shows the maximum pH modi-

fication due to OAE for all five continuous experiments and the time series of the depth

that separates OAE-impacted waters from unmodified waters, and Figure S8b shows the

time series of the depth that separated OAE-impacted waters from unmodified waters

(see main text for definition and details).

Figure S9 compares the net CO2 uptake efficiency, η, from monthly and yearly NAS

and ACC deployments in ECCO-Darwin to the range of efficiencies derived from the four

closest polygons in Zhou et al. (2025), obtained from the CarbonPlan website1. The

specific polygons used for this comparison are listed in Table S1. For this comparison,

we assume that the deployments in Zhou et al. (2025) were conducted in the year 1995.

To estimate the yearly deployment efficiency, we averaged efficiency values from four

representative months: January, April, July, and October.

As shown in Figure S9, the overall efficiency η is higher in ECCO-Darwin. However,

the seasonal variation in efficiency is comparable between the two simulations. Further

investigation is needed to attribute these differences to the underlying processes.
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Figure S1. Comparison of time-mean (from January 1995 to December 2017) surface-

ocean fields from the baseline ECCO-Darwin simulation against reference (a) sea-surface

temperature (SST), (b) sea-surface salinity (SSS), (c) DIC, and (d) Alk . Reference

SST is from Reynolds et al. (2002); all other reference fields are from OceanSODA-ETHZ

(Gregor & Gruber, 2021).
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Figure S2. Comparison of time-mean (1995–2017) surface-ocean fields from ECCO-

Darwin LLC 270 (Carroll et al., 2020) and the baseline ECCO-Darwin (LLC90 solution)

used in this paper.
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Figure S3. (a) OAE deployment sites and time-mean values (from January 1995 to

December 2017) of (b) magnitude of surface-ocean horizontal velocity, (c) average vertical

velocity in the upper 100 m, and (d) average vertical diffusivity in the upper 100 m.
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Figure S4. Comparison of the baseline ECCO-Darwin DIC and Alk against all

GLODAPv2.2022 observations (Lauvset et al., 2021) at the 5 deployment sites. The

x-axis shows observations and y-axis shows the corresponding monthly averaged model

value taken at the closest space-time location.
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Figure S5. Horizontally-integrated budget terms from ∆’DIC (Equation 4) for the 5

continuous OAE experiments over the last 5 years of simulation. Budget terms include:

tendency, diffusion, advection, and air-sea CO2 flux. Biological source terms are negligible

and not shown. Three different mixed layer depth (black lines) are computed using Boyer,

Suga, and Kara diagnostics and we plot the spatially averaged values over the OAE

deployment sites.
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Figure S6. Horizontally-integrated budget terms for ∆Âlk (Equation 5) for the 5

continuous OAE experiments over the last 5 years of simulation. Budget terms include:

tendency, diffusion, and advection. Biological source terms are not shown because they

are negligible; prescribed surface-ocean Alk flux is constant and is also not shown. Three

different mixed layer depth (black lines) are computed using Boyer, Suga, and Kara diag-

nostics and we plot the spatially averaged values over the OAE deployment sites.
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Figure S7. Comparison of time series of horizontally averaged, vertically-resolved

mCDRequil from ECCO-Darwin (left panel) and both versions of rapid-mCDR (middle

and right panels).
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Figure S8. Continious OAE experiments: (a) Maximum pH perturbation across time

and depth (maximum ∆ pH) due to OAE for the 5 continuous experiments. Only values

above 0.0025 are shown. Isolines represent maximum ∆pH values of 0.01, 0.02, 0.03, and

0.04. (b) Time series of the depth that separates OAE-impacted waters from unmodified

waters. This depth is such that 95% of ejected alkalinity stays above it.
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ED deployments Polygons from Zhou et al. (2025)

NAS 32, 52, 128, 138

ACC 509, 530, 629, 635

Table S1. Polygon indices from Zhou et al. (2025) on CarbonPlan website used for

comparison with ECCO-Darwin deployments.
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Figure S9. Net CO2 Uptake Efficiency (η) from ECCO-Darwin: monthly pulse De-

ployments (July 1995 – Blue; January 1995 – Red), Yearly 1995 Deployment (Black), and

Zhou et al. (2025) Ranges (Shaded Areas). The Zhou et al. (2025) ranges are derived

from the spread of simulations from the four nearest polygons to our deployment sites

(polygon indices are shown in Table S1). The yearly ECCO-Darwin deployment is com-

pared to the mean efficiency of four monthly deployments from Zhou et al. (2025). Note

that the experiments of Zhou et al. (2025) were initialized in the year 1999, but the initial

year is shifted to 1995 on the plot for comparison. Panel (a) for NAS and (b) for ACC

deployment locations.
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