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Thank you for the invitation to speak, visit, and
even more, thank you for your hospitality!

It’s an honor to be here.



My goal for this talk

A descriptive introduction to observations and
mathematical models of oceanic wave motions.



My aspirations for you

After this talk, | hope that you will have an
appreciation for:
1. Ubiquity and diversity of ocean waves
2. Mathematical models that have been
applied to study them



What this talk will not be

* A particularly original or comprehensive
treatment of ocean wave motion.

* Ocean waves have been a subject of constant
and often intense research for much of the last
several centuries, at least back to 1776 when
Laplace studied the tides.

 These researchers (and teachers) deserve credit
for building up all the ideas presented today.



What is a wave?

* Loosely defined

* A transient/oscillatory perturbation to a
background state that travels at a speed typically
different from the speed of the background.




Ocean is characterized by many
frequencies

* Many classes of wave
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* Classified by dominant [ e 15 | - T -
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* Spectral peaks .
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(e.g. semi-diurnal
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Schematic frequency spectrum from Leblond and Mysak 1978



Navier Stokes System:
One equation to rule them all

du Vp

Ve +u-Vu+fxu = - — 4+ b+ vAu
dt N o’ e £0 -~ N
v Advection  Coriolis — Buoyancy  Friction

I'ime tendency Pressure Gradient

Ob
5 +u-Vb = kAb,
V-u=0, N
f = (0,0,29,sin(d)) where Q, ~ 7.3 x 107° s~ 1 Traditional
f X1 = (_frU fu O) T apprOimation
f = fo+ By =~ Beta-plane

approximation
b= —gp/po buoyancy

-> Generality is both the greatest asset and greatest weakness of the Navier Stokes system.

-> Need to create reduced models to understand particular problems and obtain or interpret solutions.



Tangent-plane Cartesian coordinates

2nt/f,~ 1 day in midlatitudes

Local tangent plane
approximation (beta plane)

f = (0,0,29Q,sin()) where Q, ~ 7.3 x 107° s~ 1
> |
f Xu= (_f'U, f’U;, 0) Equatoy Equator

f=fo+ By

unit vectors (i, j, k) . pole

Fig. 2.3 The spherical coordinate system. The orthogonal unit vectors i, j and k point
in the direction of increasing longitude A, latitude &, and altitude z. Locally, one may
apply a Cartesian system with variables x, v and z measuring distances along i, j
and k.




Outline: A tale of three waves

1. Surface-gravity waves
2. Internal inertia-gravity waves
3. Rossby waves

Three different reduced models of the
Navier-Stokes system.



Example 1:
Gravity waves at the air-water interface

 Familiar to the casual observer

* Generated by local (or distant)
winds.

* Underwater bathymetry
guides waves onto beaches
and leads to steepening and
breaking as they approach
shore




Assumptions/scaling

Dimensional Parameters Explicit Assumptions
Coriolis force is negligible
[7 Velocity scale [m/s] f

_E ; 2:71-/];; Length scale [m] / 5 <<1
Wavenumber [rad/m]

T — 27 /@ Time scale [s] / Advection is negligible
Frequency [rad/s] 07{7

— << 1
W

Implicit Assumptions

: Frictional force is negligible
1. All components of velocity scale the same L

2. Horizontal and vertical length scales are the l/]:?2
same - . <<1
- r o
U ~ ~ W W

-

“/’I.
L ~ H.



Assumptions/scaling

Dimensional Parameters Explicit Assumptions
Coriolis force is negligible
[7 Velocity scale [m/s] f

T ; 2:”-/];; Length scale [m] / 5 <<1
Wavenumber [rad/m]

T — 27 /@ Time scale [s] / Advection is negligible
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Implicit Assumptions

: Frictional force is negligible
1. All components of velocity scale the same L

2. Horizontal and vertical length scales are the l/]:?2
same . . <L 1
L, . -
U ~ ~ W W
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I ~ H. Ratios of two timescales




Are these assumptions reasonable?

o0




Are these assumptions reasonable?

o0

What about pressure?

P~Ud/k

The only force left to produce a
non-trivial solution!



Reduced governing equations

ou Vp
ot Po N~~~
=~ N~ Buoyancy
Time tendency Pressure Gradient
V-u=0,

b=g=(0,0,g) —the buoyancy is effectively constant

ob —g 0op

Note: scaling assumptions imply: WSS N =4/ — =4+ —=
0z po 0z



Irrotational flow!

0V><u_
ot

Helmholtz Theorem: any three-dimensional vector field on a
compact domain can be decomposed into a rotational and
divergent part Vo n V x &
v \'—v—/

irrotational /divergent  solenoidal/rotational

where V - @ = (),

0

Therefore: governing equation reduces to a harmonic function
because both the curl and divergence of u are zero:

0=V -u=A0¢



Boundary Conditions

“Many people would claim that the boundary conditions
are not part of physics but belong to metaphysics or
religion....Yet all the evidence is that it evolves in a
regular way according to certain laws.” "The Quantum
State of the Universe", Nuclear Physics (1984)




Boundary Conditions

Bottom: w=0 ,=0 ;{/_\/WT

0o B B D
52 = O, at z =—-D C. \ll
Surface:
1) kinematic
0 0
W|z=¢ = 3_f|z=(j — 8_5 + Vho - V(. where V;, = (0/0x,0/0y)

2) Dynamic (zero pressure difference across the
surface)



Boundary Conditions

Bottom: w=0 ,=0 ;{/_\/WT

09
g—o,at z=-=D C ¢

D

Taylor series expansion shows that we must
apply the surface BCs at z=0 (not zeta) to be
asymptotically consistent

-> Combined surface BC at z =0:

% 3¢

o2 T 95, ="




Solution

Insert ansatz: ¢ — Re(R(z)ei(kx"'ly_Wt))

Solve ODE 2

for vertical d°R — KZR K2 — k2+l2
structure: dz2

R = A’ cosh(K (z+ D))
sufaceBC=>  —w? cosh(K D) + gK sinh(K D) =0

-/ gK tanh(K D)

€
|
.

General solution is a sum of Fourier
components.



Dispersion Relation

* Frequency is a function of depth and wavenumber.

Linear Water Wave Frequency

log 0@ [rad/s]

Water Depth [m]
)

107" 107 107 107 10° 10’
Horizontal Wavenumber (K) [rad/m]

Dispersive waves: in contrast to the solutions of the classic wave equation, which
travel without changing shape, the different Fourier components of these water-
wave solutions will become separated in space, wavenumber, and frequency as
they propagate.



What do these solutions look like?

* Use polarization relations assuming K =k and [ =0

((z,t) = C(ocos(kr — wt),

| ~, wcoshk(z+ D) |,
o(z,z,t) = (o b KD sin(kx — wt),
- ‘ cosh k(z + D)
u = (owcos(kr — wt) Soh KD
w = (owsin(kz — wt)smh Kz + D).

sinh KD



What do these solutions look like?

Example Water Wave (kD =6.3) | === Free surface
—= Wave velocity vector

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\

.....................
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

......................................

[meters]

Three regimes:

High KD (short / deep waves)
Llow KD (shallow / long waves)
ntermediate KD (shown here)




More on water waves?

e See e.g. short books by: Pedlosky (2003)
Atmospheric and Oceanic Waves and Phillips
(1966) Upper Ocean Dynamics.



Example 2:
Internal inertia-gravity waves

e Oscillations of density and momentum in the
ocean interior.

255

Density Anomaly
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e internal tide

09706 09707 09708



Example 2:
Internal inertia-gravity waves

* Oscillations of density and momentum in the
ocean interior.
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Example 2:
Internal inertia-gravity waves

* Oscillations of density and momentum in the

ocean interior.

Frequency Power Spectra
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Deriving a Governing Equation

e Step 1: Subtract background density profile.
— Ocean is stratified and dominant force balance is

hydrostatic. 0_ _ 1 0p(z)  p(z) _ 1 0p(2) L Bz)
po 0z PO po Oz
Density perturbation
(from 1000 kg/m?3) N = (db/dz)'/2

1000 \

\

DEPTH [M]
DEPTH [M]

2 4 6
Brunt-Vaisala Freq. [cycl/h]



Deriving a Governing Equation

e Step 2: make the following scaling
assumptions:

Advection is negligible

Uk
T<<1
W

Frictional force is negligible

vk?
— <<1
W

I have relaxed the assumption that w >> N >> f



Deriving a Governing Equation

e Step 3: Write down the non-dimensional
equations and eliminate small terms. Then re-
dimensionalize to obtain:

o 1o
ot ' T pp oz’
ov 1 Op
a‘*‘fou - —,O_Oa—y,
ow 1 Op
% = poz

0b 9
E—f—wN (z) = 0,

ou n ov N ou
or Oy 0z

= 0,



Deriving a Governing Equation

e Step 4: Reduce to one equation in one
unknown.

02 2 02?.0 82 2 8210 8210
(5 + ) 5 + (5 + ) (52 + 37 ) =0

Note that we have assumed lateral length scales are sufficiently small that
beta (df/dy) is not important.

Here, we will assume that w=0 on top and bottom, i.e. Flat, slippery, rigid
lids. One can readily impose other BCs (e.g. rough topography)




Solution
Consider 2-D

equations w.o.l.o.g. 6_2 2 82_¢ 5_2 2 32_¢ .
(6152 +f°) 52 T\ag TV () 5,2 =0

nsertansatzz 0 = 1)g(2)etty—wt) OY/0z =v and OY /0y = —w

d?o

2
+ m“ Yo = 0
2 ’
Solve ODE dz
for vertical 0 0
structure: N<(z) —w
m2 — l2( ( ) )

(w2 —f3)
Yo(2z) = sin(mz), where m = nj/D with 7 = 1,2,...

for constant N. Arbitrary structure functions can
be obtained numerically.



Example Vertical Structure Functions
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High wavenumbers are unaffected by
boundaries and locally at constant N

=> We use the pure plane wave ansatz:

i(kx mz—uw 1+ 2> k22

Y= R6(¢06 (ka+ly+ t)) w/f == ’ f0k2m
\ 1+

fo<w<N ki = Vk2 + 2

s Dimensionless Internal Wave Dispersion Relation
10— -

N

o
log g |w/ fol

102§

N/ fo

—h

101§

o
(3]

|
10
10~




Interesting property

* Aspect ratio fixed by frequency & background

(N f) Mowbray and Rarity (1967), Maas et al. (1997), Gautiaux et al. (2006)
AN A - R

w = 1.1N, 0.9N, 0.7N

One initial disturbance




More?

* You're in luck! I'm going to discuss internal
waves in an inhomogeneous medium
tomorrow (although the ideas will apply to all
types of waves).

e See Pedlosky (2003), Phillips (1966), Lighthill
(1978) Waves in fluids, and Munk (1981),
Internal waves and small scale processes



Potential
Temperature (K)

Example 3:
Rossby Waves (Potential Vorticity Waves)

w << fo

08/01/14 at 06:00 GMT
Wednesday

Max: 401.921
Min: 222.659

(Hoskins 2015)

0901/14 at 06:00 GMT

<200 298 306 314 322 330 338 346 354 362 370 378 386




60N

40N

20N

Example 3:
Rossby Waves (Potential Vorticity Waves)

w << fo

(Chelton et al. 2007)
TOPEX /Poseidon+ERS—1/2  Seasurface height
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Important question

Chelton and Schlax (1996)
v Jul §

e How linear are these ‘
motions? : 8 G S

o
c
1995

1993 1994

1993 1994
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4 2 0 2 4 6
Sea level (cm)




Deriving a governing equation

e Step 1: Subtract hydrostatic balance.
e Step 2: Make scaling assumptions:

~ ~

o~UJL<< f H<<L W~ HU/L
f=(fo+Byk B~ UL

Ro = U/fL << 1, where Ro is known as the Rossby num~bér.



Deriving a governing equation

e Step 3: write non-dimensional equations
where we replacing ¢ o U = u

Ro (6;;1 + 1 - VﬁH) +?X ag = —-Vgp,
RoH (0w  _ A op

S
N

| &

]

<

o
SN———

+

>

oy

<

|

=

f = fo+ RoBj

where Bu = N?H?/f$L? is known as the Burger number



Deriving a governing equation

e Step 4: Consider an asymptotic expansion in
Rossby number

a = up+ Rolip + ...
p = po+ Ropi + ...
b = bg+ Roby + ...

Lowest order: geostrophic and hydrostatic balance (no time evolution and
horizontally non-divergent) N
fo X ug = —Vpg woBu = 0.

First order: time evolution equations for Rossby waves

ou R R Ao A . .
G%H + Ugy VuOH -1 Byk X UoH - f x Uig = —VHp1
360 6’11':1 8’lfl 6?131 —0

57 +dg - Vby + w1 Bu = 0. 9% + 3@ -+ 53



Deriving a governing equation

e Step 5: Reduce the system to one dimensionless equation

Consider vorticity egn: BC

Bwl
¢ = Ovg/0x — Ougy /Oy ot +1o - VCO T ’UOﬂ fO ( 0z )

Then use buoyancy evolution equation to replace
w, with b,, use zeroth order hydrostatic relation
to replace b, with p,, and finally:

Stream function: replace p with ¢ (fotv = po)

8% 7 Do |, r  a. 220 [ 1 0
- = [Avo + B + ' — 0.

a7 7 |A¥otPI+Jo | 55 | Buas

oY .

6;?; = 7.

where D()/D??: 8/8£+ g -V



Quasi-geostrophic Potential Vorticity
(PV) Conservation

q,=4q,=(fFN°  p- —
A stratification (or /

layer-thickness) | —

weighted vorticity N
p+

The dimensional equation is:

Dq
bt~
0 1 oY
— 2

where ¢ is known as the quasi-geostrophic potential vorticity




Ducted Rossby (PV) wave solutions in
continuous stratification

Linearized QGPV 0 0 1 Oy O
conservation a (Aw‘}‘fg& (F&)) +ﬁ8_x =0
Insert ducted plane- " _

wave ansatz: Y= "/)O(Z)ez(kx_{_ly wt)

Solve ODE for 2 0 fo2 Oo(2)

vertical structure: (Bk + wK) wo(2) = Y92 (NQ(z) 0z )

If we assume N is constang, and that 0v¥/0z = 0 at the top and bottom

Solution: cos(mz), where m = jn/D with j = 1,2, ...
Dispersion —,Bk
relation: w

B K2+m2;\%



Dynamical Sketch

Westward phase propagation

PV gradient

Vallis (2006)



An interesting result

* The zonal phase speed w/k always points from
east to west.

_ Pk
K%+ mZI%

* Back of the envelope estimate of phase speed
in the mid-latitude ocean:

For 20° N, B~ 2 x 1071 s m™!
m =~ 27/5000 m~!, and f¢/N* ~ 10~*

W

phase speed, w/k ~ 10 km/day



Important question

* How linear are these

motions? 30
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More?

 Vallis (2006), Atmospheric and Oceanic Fluid
Dynamics, Pedlosky (2003), and Pedlosky
(1986), GFD.

* Also Hoskins et al. (1985), On the use and
significance of isentropic potential vorticity
maps.



Some other topics

* Lagrangian/Conservation Law perspective for
internal waves

 Wave propagation in an inhomogeneous
medium

— Trapping, amplification, & wave breaking



Lagrangian parcel analysis

40,
u

2 N? ).
G
n
) >
Y
Assuming that the motion adapts immediately to the background pressure
DM
%—fov = _l?, = = 0, % = Y
pPo OT Dt Dt ’
N odou =~ —> DM
at 70 po Oy’ ¥y 0, Db — 0
ow 1 Op Dt e )
B~ pooz Y Dt
@+wN2(z) = 0, )
PN M, = u(z,y,2,t)— fn is conserved, M, = v(z,y, 2,t)+ f¢
ety Ta: = D¢/Dt = w, Dn/Dt = v and D§/Dt = u



Lagrangian parcel analysis

% forces as a function of displacement
Qe Du 9
F:r:_ = +fv=_f €s
2l N? & u Dr
- il Fy=2, = —fu=-f™n,
n _ Dw ., 0
- > Fz—ﬁ — b——NC,
Y
Imply the following governing equation
D?|¢] . .
el Plenl cos(8) — NIl sin(8) = —[€] (2 cos2(6) + N2sin?(0)

w? = f2cos?(0) + N?sin?(0),

for the magnitude of the displacement || at angle 6 = tan™*(1/|€]2 + |n|2/[¢])



Teaser: Waves in an inhomogeneous
medium
* Inhomogeneity in the medium/wavefield is a

necessary (but not sufficient) condition for
understanding waves in the real ocean

Idea is to generalize plane wave solution so ( > ﬁw
that it is modulated by an envelope/amplitude \
function that varies slowly in time and space /
compared to frequency and wavelength /

respectively.

¥ = Re(Yo(,y, z,1)e’*@20) “
\




Conclusions

Fundamental mathematical tools for wave theory
are broadly applicable.

However, a detailed analysis can still yield
surprising results in specific cases.
This is just the beginning!

— Wave theory is a foundational concept in GFD and
plays an important role in our understanding of both
the atmospheric and oceanic general circulation.

Just to emphasize this:
— Two important examples that | haven’t discussed



Tides

Water level anomaly at San Francisco Tide Gauge from 01/17/2011 - 01/20/2011
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Tropical Instability Waves

Snapshot of sea
surface temperature
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Not pure Rossby waves.



Outline #2

Wave energy propagation in an inhomogeneous
medium.

Critical layers and turning points

— Wave trapping and energy convergence (shoaling)
Wave/turbulence transitions, wave breaking

— Surf zones

— Mean circulations driven by dissipating waves.
Balance and imbalance: if it wiggles, is it a wave?
— wave/vortex decompositions

— pathways for energy exchange between balanced and
unbalanced flows

* Link to KE budget of the general circulation



